Analíticas de aprendizaje en la Educación Primaria y Secundaria en España: Una revisión sistemática de la literatura
Número
Sección
Palabras clave:
Métodos de aprendizaje, educación, comportamiento innovador, tratamiento de datos, visualización de datos
Publicado
Resumen
Las Analíticas del Aprendizaje (AA) se definen como la medición, recopilación, análisis y presentación de datos sobre los estudiantes y su entorno con el fin de comprender y optimizar el aprendizaje y los contextos educativos. A pesar de su potencial importancia, se carece de un marco claro para las AA en la Educación Primaria y Secundaria en España. Este estudio busca enriquecer el conocimiento mediante una Revisión Sistemática de la Literatura (SLR) siguiendo el procedimiento PRISMA. Se analizaron 16 artículos científicos, revelando la falta de participación activa de los docentes en el desarrollo de AA en entornos educativos tradicionales. Además, se destacó la tendencia a usar AA para predecir y mejorar el compromiso y rendimiento de estudiantes a través de juegos didácticos en diversas áreas.Agencias de apoyo
NoCómo citar
Licencia
Derechos de autor 2023 Belén Donate-Beby, Francisco José García-Peñalvo, Daniel Amo-Filva
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los/as autores/as que publiquen en esta revista aceptan los términos siguientes:
- Los/as autores/as conservan los derechos de autor y conceden en la revista el derecho de primera publicación de la obra, registrada bajo una licencia de reconocimiento de Creative Commons (CC BY-NC-SA), que permite que se haga difusión reconociendo la autoría y la primera publicación en esta revista.
- Los/as autores/as pueden establecer, independientemente, otras disposiciones contractuales que permitan la publicación de la versión publicada en esta revista en otros medios (por ejemplo, en un repositorio institucional o en un libro), con el reconocimiento de la publicación inicial en esta revista.
- Los/as autores/as tienen permiso para publicar su obra en línea y se les propone hacerlo (por ejemplo, en repositorios institucionales o en su página web) antes y durante el proceso de entrega, porque puede producir buenos resultados y hacer que la obra publicada reciba más citaciones (Ver The Effect of Open Access).
DECLARACIÓN DE PRIVACIDAD
Los nombres y las direcciones de correo electrónico que hay en el sitio web de la revista solo se utilizarán para los usos indicados en esta revista y no estarán disponibles para ningún otro uso ni para terceras personas.
Descargas
Referencias
Aluja-Banet, T., Sancho, M.-R., & Vukic, I. (2019). Measuring motivation from the Virtual Learning Environment in secondary education. Journal of Computational Science, 36, 100629–100629. https://doi.org/10.1016/j.jocs.2017.03.007
Amo, D., Alier, M., Sansaloni, R., Geli, J., Fonseca, D., García-Peñalvo, F. J., & Casañ, M. J. (2021). Learning Analytics Icons for analytics’ transparency, information, and easy comprehension of data treatment of students. In Ninth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM’21) (pp. 587–593). Association for Computing Machinery. https://doi.org/10.1145/3486011.3486520
Amo, D., Fox, P., Fonseca, D., & Poyatos, C. (2020). Systematic Review on Which Analytics and Learning Methodologies Are Applied in Primary and Secondary Education in the Learning of Robotics Sensors. Sensors, 21(1), 153–153. https://doi.org/10.3390/s21010153
Amo, D., Prinsloo, P., Alier, M., Fonseca, D., Torres Kompen, R., Canaleta, X., & Herrero-Martín, J. (2021). Local technology to enhance data privacy and security in educational technology. International Journal of Interactive Multimedia and Artificial Intelligence, 7(2), 262–273. https://doi.org/10.9781/ijimai.2021.11.006
Amo-Filvà, D., Alier Forment, M., García-Peñalvo, F. J., Fonseca Escudero, D., & Casañ, M. J. (2019). Clickstream for learning analytics to assess students’ behavior with Scratch. Future Generation Computer Systems, 93, 673–686. https://doi.org/10.1016/j.future.2018.10.057
Amo-Filva, D., Donate Beby, B., García-Peñalvo, F. J., & Chen, J. (2022). Towards an ethical data literacy proficiency: A Moodle logs analytical tool. 2022 XII International Conference on Virtual Campus (JICV), 1–3. https://doi.org/10.1109/JICV56113.2022.9934790
Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of Systems and Software, 80(4), 571–583. https://doi.org/10.1016/j.jss.2006.07.009
Calvo-Morata, A., Alonso-Fernández, C., Freire, M., Martínez-Ortiz, I., & Fernández-Manjón, B. (2021). Creating awareness on bullying and cyberbullying among young people: Validating the effectiveness and design of the serious game Conectado. Telematics and Informatics, 60. https://doi.org/10.1016/j.tele.2021.101568
Calvo-Morata, A., Rotaru, D. C., Alonso-Fernandez, C., Freire-Moran, M., Martinez-Ortiz, I., & Fernandez-Manjon, B. (2020). Validation of a Cyberbullying Serious Game Using Game Analytics. IEEE Transactions on Learning Technologies, 13(1), 186–197. https://doi.org/10.1109/TLT.2018.2879354
Celdrán, A., Ruipérez-Valiente, J. A., Garcia Clemente, F. J., Rodríguez-Triana, M. J., Shankar, S. K., & Martinez Perez, G. (2020). A scalable architecture for the dynamic deployment of multimodal learning analytics applications in smart classrooms. Sensors, 20(10), 2923. https://doi.org/10.3390/s20102923
Cruz-Benito, J., Garcia-Penalvo, F. J., & Theron, R. (2019). Analyzing the software architectures supporting HCI/HMI processes through a systematic review of the literature. Telematics and Informatics, 38, 118–132. https://doi.org/10.1016/j.tele.2018.09.006
Diago, P. D., González-Calero, J. A., & Arnau, D. (2019). Fundamentos de diseño de un entorno tecnológico para el estudio de las habilidades en resolución de problemas en primeras edades escolares. Research in Education and Learning Innovation Archives, 22, 58-76. https://doi.org/10.7203/realia.22.14113
Donate, B., García-Peñalvo, F. J., & Amo, D. (2021). Learning Analytics in K-12 Spanish education: A systematic mapping study. 2021 XI International Conference on Virtual Campus (JICV). https://doi.org/10.1109/JICV53222.2021.9600315
Donate, B., García-Peñalvo, F.J., Amo, D., de Torres, E., Herrero-Martín, J. (2022). An Instrument for Self-assessment of Data Literacy at the Micro, Meso, and Macro Educational Levels. In P. Zaphiris & A. Ioannou (Eds.), Learning and Collaboration Technologies. Designing the Learner and Teacher Experience. HCII 2022. Lecture Notes in Computer Science, vol 13328 (pp. 228-237). Springer. https://doi-org.sabidi.urv.cat/10.1007/978-3-031-05657-4_16
Donate-Beby, B., García-Peñalvo, F. J., & Amo-Filvà, D. (2023). Data Literacy for the Development of Learning Analytics in K-12 Environments. In F. J. García-Peñalvo & A. García-Holgado (Eds.), Proceedings TEEM 2022: Tenth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 1370–1376). Springer. https://doi.org/10.1007/978-981-99-0942-1_146
Fernández-Soriano, F. L., López, B., Martínez-España, R., Muñoz, A., & Cantabella, M. (2019). Use of Computing Devices as Sensors to Measure Their Impact on Primary and Secondary Students’ Performance. Sensors, 19(14), 3226–3226. https://doi.org/10.3390/s19143226
Figueiredo, J., Lopes, N., & García-Peñalvo, F. J. (2019). Predicting Student Failure in an Introductory Programming Course with Multiple Back-Propagation. TEEM’19: Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, 44–49. https://doi.org/10.1145/3362789.3362925
García-Peñalvo, F. J., & Corell, A. (2020). La COVID-19: ¿enzima de la transformación digital de la docencia o reflejo de una crisis metodológica y competencial en la educación superior? Campus Virtuales, 9(2), 83–98. http://uajournals.com/ojs/index.php/campusvirtuales/article/view/740
García-Peñalvo, F. J., Corell, A., Abella-García, V., & Grande-de-Prado, M. (2021). Recommendations for Mandatory Online Assessment in Higher Education During the COVID-19 Pandemic. In D. Burgos, A. Tlili, & A. Tabacco (Eds.), Radical Solutions for Education in a Crisis Context: COVID-19 as an Opportunity for Global Learning (pp. 85–98). Springer. https://doi.org/10.1007/978-981-15-7869-4_6
García-Peñalvo, F. J., Reimann, D., & Maday, C. (2018). Introducing Coding and Computational Thinking in the Schools: The TACCLE 3 – Coding Project Experience. In M. S. Khine (Ed.), Computational Thinking in the STEM Disciplines (pp. 213–226). Springer International Publishing. https://doi.org/10.1007/978-3-319-93566-9_11
Hodges, C. B., Moore, S., Lockee, B. B., Trust, T., & Bond, M. A. (2020, March 27). The difference between emergency remote teaching and online learning. EDUCAUSE Review. https://er.educause.edu/articles/2020/3/the-difference-between-emergency-remote-teaching-and-online-learning
Israel-Fishelson, R., Hershkovitz, A., Eguíluz, A., Garaizar, P., & Guenaga, M. (2021). The Associations Between Computational Thinking and Creativity: The Role of Personal Characteristics. Journal of Educational Computing Research, 58(8), 1415–1447. https://doi.org/10.1177/0735633120940954
Johnson, L., Becker, S. A., Cummins, M., Estrada, V., Freeman, A., & Hall, C. (2016). NMC Horizon Report: 2016 Higher Education Edition. The New Media Consortium. https://www.learntechlib.org/p/171478/
Khalil, M., & Ebner, M. (2015). A STEM MOOC for school children—What does learning analytics tell us? 18th International Conference on Interactive Collaborative Learning (ICL), 1217–1221. http://dx.doi.org/10.1109/ICL.2015.7318212
López Camacho, V., de la Guía, E., Olivares, T., Flores, M.J., & Orozco-Barbosa, L. (2020). Data Capture and Multimodal Learning Analytics Focused on Engagement with a New Wearable IoT Approach. IEEE Transactions on Learning Technologies, 13(4), 704–717. https://doi.org/10.1109/TLT.2020.2999787
López Zambrano, J., Lara Torralbo, J. A., & Romero Morales, C. (2021). Early prediction of student learning performance through data mining: A systematic review. Psicothema, 33(3), 456-465. https://doi.org/10.7334/psicothema2021.62
Marcos-Pablos, S., García-Holgado, A., & García-Peñalvo, F. J. (2020). Guidelines for performing Systematic Research Projects Reviews. International Journal of Interactive Multimedia and Artificial Intelligence, 6(2), 136-144. http://dx.doi.org/10.9781/ijimai.2020.05.005
Melero, J., Hernández-Leo, D., Sun, J., Santos, P., & Blat, J. (2015). How was the activity? A visualization support for a case of location-based learning design. British Journal of Educational Technology, 46(2), 317–329. https://doi.org/10.1111/bjet.12238
Michos, K., & Hernández-Leo, D. (2020). CIDA: A collective inquiry framework to study and support teachers as designers in technological environments. Computers & Education, 143, 103679. https://doi.org/10.1016/j.compedu.2019.103679
Michos, K., Hernández-Leo, D., & Albó, L. (2018). Teacher-led inquiry in technology-supported school communities. British Journal of Educational Technology, 49(6), 1077–1095. https://doi.org/10.1111/bjet.12696
Nebot, P. D. D., Somoza, J. A. G.-C., & Vera, D. A. (2019). Fundamentos de diseño de un entorno tecnológico para el estudio de las habilidades en resolución de problemas en primeras edades escolares. Research in Education and Learning Innovation Archives. REALIA, 22, 58–76. https://dialnet.unirioja.es/servlet/articulo?codigo=6997125
Nieto-Márquez, N. L., Cardeña Martínez, A., Baldominos, A., González Petronila, A., & Pérez Nieto, M. Á. (2020). Assessment of the Effects of Digital Educational Material on Executive Function Performance. Frontiers in Education, 5, 545709. https://doi.org/10.3389/feduc.2020.545709
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery, 88, 105906. https://doi.org/10.1016/J.IJSU.2021.105906
Peña-Ayala, A. (2018). Learning analytics: A glance of evolution, status, and trends according to a proposed taxonomy. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(3), e1243. https://doi.org/10.1002/widm.1243
Petticrew, M., & Roberts, H. (2008). Systematic reviews in the social sciences: A practical guide. John Wiley & Sons.
Raffaghelli, J. E. (2018). Educators’ Data Literacy: Supporting critical perspectives in the context of a “datafield” education. In L. Menichetti, M. Ranieri, & M. Kaschny Borges (Eds.), Teacher Education & Training on ICT between Europe and Latin America (pp. 91–109). Aracne. https://doi.org/10.4399/97888255210238
Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: A key to evidence-based decisions. ACP J Club, 123(3), A12. https://doi.org/10.7326/ACPJC-1995-123-3-A12
Rodríguez, J. A., González-Calero, J. A., & Cózar, R. (2018). Diseño de un estudio exploratorio para la aplicación de técnicas de analíticas de aprendizaje en la enseñanza de las fracciones en 5o curso de Educación Primaria. Magister, 30(1 y 2), 29–42. https://doi.org/10.17811/msg.30.1.2018.29-42
Rodríguez-Martínez, J. A., González-Calero, J. A., Del Olmo-Muñoz, J., Arnau, D., & Tirado-Olivares, S. (2023). Building personalised homework from a learning analytics based formative assessment: Effect on fifth-grade students’ understanding of fractions. British Journal of Educational Technology, 54(1), 76–97. https://doi.org/10.1111/bjet.13292
Ruipérez-Valiente, J. A., & Kim, Y. J. (2020). Effects of solo vs. collaborative play in a digital learning game on geometry: Results from a K12 experiment. Computers & Education, 159, 104008. https://doi.org/10.1016/j.compedu.2020.104008
Sancho, M.R., Cañabate, A., & Sabate, F. (2016). Contextualizing learning analytics for secondary schools at micro level. 2015 International Conference on Interactive Collaborative and Blended Learning (ICBL), 70–75. https://doi.org/10.1109/ICBL.2015.7387638
Schmid, R., & Petko, D. (2019). Does the use of educational technology in personalized learning environments correlate with self-reported digital skills and beliefs of secondary-school students? Computers & Education, 136, 75–86. https://doi.org/10.1016/j.compedu.2019.03.006
Serrano-Laguna, Á., Torrentea, J., Maneroa, B., del Blancoa, Á., Borro-Escribanoa, B., Martínez-Ortiza, I., Freirea, M., & Fernández-Manjóna, B. (2014). Learning Analytics and Educational Games: Lessons Learned from Practical Experience. In De Gloria, A. (Eds.), Games and Learning Alliance. GALA 2013. Lecture Notes in Computer Science, vol 8605. Springer. https://doi.org/10.1007/978-3-319-12157-4_2
Siemens, G. (2012). Learning analytics: Envisioning a research discipline and a domain of practice. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 4–8. https://doi.org/10.1145/2330601.2330605
Spanish Network Of Learning Analytics (SNOLA) (n.d.). Acerca de SNOLA – About SNOLA. Retrieved 4 April 2022, from https://snola.es/acerca-de-snola-about-snola/
Society for Learning Analytics Research (SoLAR). (n.d.). About SoLAR. Retrieved 13 January 2022, from https://www.solaresearch.org/about/
UNESCO (2020). Education: from school closure to recovery. https://en.unesco.org/covid19/educationresponse
Urrutia, G., Torta, S., & Bonfill, X. (2005). Metaanálisis (QUOROM). Medicina Clínica, 125(1), 32–37. https://doi.org/10.1016/S0025-7753(05)72207-7
Wastiau, P., Blamire, R., Kearney, C., Quittre, V., Van de Gaer, E., & Monseur, C. (2013). The Use of ICT in Education: A survey of schools in Europe. European Journal of Education, 48(1), 11–27. http://doi.org/10.2307/23357043
Wieringa, R., Maiden, N., Mead, N., & Rolland, C. (2006). Requirements engineering paper classification and evaluation criteria: A proposal and a discussion. Requirements Engineering, 11(1), 102–107. https://doi.org/10.1007/s00766-005-0021-6
Willis, J. E., Slade, S., & Prinsloo, P. (2016). Ethical oversight of student data in learning analytics: A typology derived from a cross-continental, cross-institutional perspective. Educational Technology Research and Development, 64, 881–901. https://doi.org/10.1007/s11423-016-9463-4