Indicadores de abandono en contextos MOOC, una aproximación pedagógica desde la literatura.

Jorge Angel Martinez Navarro

Resum

 

La tasa de abandono en MOOC (Massive Open Online Courses), es un problema considerado importante desde el momento mismo de su expansión, de forma similar a como se acusaba el abandono educativo en las formas más tradicionales de educación a distancia. Sin embargo, precisamente por el carácter masivo de los datos ofrecidos por las plataformas digitales sobre las que se implementan los MOOC, empiezan a ser frecuentes las experiencias que intentan buscar en las llamadas analíticas de aprendizaje (learning analytics), respuestas al problema del abandono, aunque en general, nos dejan poca o ninguna información sobre cuáles son los fundamentos teóricos y pedagógicos sobre los que se fundamentan estas soluciones. Este estudio pretende hacer una aproximación al problema del abandono en los MOOC desde una perspectiva pedagógica que nos permita conocer cuáles son los factores e indicadores relacionadas con el abandono que se detectan en la literatura científica que se relaciona con los MOOC. Para ello se propone una triple revisión de literatura en formato secuencial y complementario, que explore la literatura específica sobre MOOC, la literatura sobre uso de analíticas de aprendizaje en MOOC para implementar mejoras en MOOC y la literatura específica sobre abandono en Educación a Distancia. Como resultado se ofrece un listado de indicadores relacionados con el abandono en MOOC, fundamentados por la literatura especializada, que pueden ser utilizados como factores clave sobre los qué influir en el diseño de los cursos en el futuro, o como elementos de utilización en aproximaciones de uso de las analíticas de los cursos en cuestión.


Paraules clau

MOOC, experiencias, analíticas, predicciones, revisión de literatura

Text complet:

PDF (Español (España))

Referències


Aguaded, I., & Medina-Salguero, R. (2015). Criterios de calidad para la valoración y gestión de MOOC. RIED. Revista Iberoamericana de Educación a Distancia, 18 (2), 119-143. doi: http://dx.doi.org/10.5944/ried.18.2.13579.

Area, M., & Adell, J. (2009). E-learning: Enseñar y aprender en espacios virtuales. En J de Pablos (Coord.) Tecnología Educativa. La Formación Del Profesorado En La Era de Internet, 391–424.

Arnal, J. (1992). Investigación educativa. Fundamentos y metodología. Barcelona: Labor

Baturay, M H. (2015). An overview of the world of MOOCs. Procedia - Social and Behavioral Sciences, 174, 427–433. https://doi.org/10.1016/j.sbspro.2015.01.685.

Bayeck, R. (2016). Exploratory study of MOOC learners’ demographics and motivation: The case of students involved in groups. Open Praxis, 8(3), 223-233. doi: http://dx.doi.org/10.5944/openpraxis.8.3.282

Bean, J., & Metzner, B. (1985). A Conceptual Model of Nontraditional Undergraduate Student Attrition. Review of Educational Research, 55(4), 485–540. doi: https://doi.org/10.3102/00346543055004485

Billings, D. M., Connors, H. R., & Skiba, D. J. (2001). Benchmarking best practices in Webbased nursing courses. Advances in Nursing Science, 23, 41-52.

Borras-Gene, O., Martinez-Nunez, M., & Fidalgo-Blanco, Á. (2016). New challenges for the motivation and learning in engineering education using gamification in MOOC. International Journal of Engineering Education, 32(1), 501-512.

Boyle, D. K., & Wambach, K. A. (2001). Interaction in graduate nursing Web-based instruction. Journal of Professional Nursing, 17, 128-134.

Cabero, J. (2015). Visiones educativas sobre los MOOC. RIED. Revista Iberoamericana de Educación a Distancia, 18 (2), 39-60. doi: http://dx.doi. org/10.5944/ried.18.2.13718.

Calise, M., Reda V. (2017). Federica experience in the rugged terrain of MOOCs inclusion in institutional strategies of university education. Proceedings of EMOOCs 2017: Work in Progress Papers of the Experience and Research Tracks and Position Papers of the Policy Track 89 In and Out.

Castaño, C., & Maiz, I., & Garay, U. (2015). Percepción de los participantes sobre el aprendizaje en un MOOC. RIED. Revista Iberoamericana de Educación a Distancia, 18 (2), 197-221. doi: http://dx.doi.org/10.5944/ ried.18.2.13444

Castillo, Nathan M.; Lee, Jinsol; Zahra, Fatima T.; and Wagner, Daniel A. (2015). "MOOC for Development: Trends, Challenges, and Opportunities". Journal Articles (Literacy.org). 6. https://repository.upenn.edu/literacyorg_articles/6

Chickering, A. W., & Gamson, Z. F. (1987). Seven principles for good practice in undergraduate education. AAHE bulletin, 3, 7. doi: https://doi.org/10.1080/13562517.2013.827653

Collis, B., De Boer, W., & Slotman, K. (2001). Feedback for web‐based assignments. Journal of Computer Assisted Learning, 17(3), 306-313. doi: https://doi.org/10.1046/j.0266-4909.2001.00185.x

Conole, G. (2016). MOOC as disruptive technologies: strategies for enhancing the learner experience and quality of MOOC. RED: Revista de Educacion a Distancia, (50), 1-18.

Daniel, J.; Vázquez-Cano, E.; Gisbert, M. (2015) “El futuro de los MOOC: ¿aprendizaje adaptativo o modelo de negocio?”. RUSC. Universities and Knowlwdge Society Journal, 12 (1), pp. 64-74. doi: http://dx.doi.org/10.7238/rusc.v12i1.2475

Despujol, I., Castañeda, L., & Turro, C. (2018). Developing A MOOC Initiative: Lessons Learned from the Universitat Politècnica de València Experience. Turkish Online Journal of Distance Education, 19(1), 215-233.

Duart, J. M., Roig-Vila, R., Mengual-Andrés, S., & Maseda Durán, M. Á. (2018). La calidad pedagógica de los MOOC a partir de la revisión sistemática de las publicaciones JCR y Scopus (2013-2015). Revista Española de Pedagogía 266, 29-46.: doi: 10.22550/REP75-1-2017-02

Escanés, G., Herrero, V., Merlino, A., & Ayllón, S. (2014). Deserción en educación a distancia: factores asociados a la elección de modalidad como desencadenantes del abandono universitario. Virtualidad, Educación Y Ciencia, 5(9), 45–55.

Gao, M., Li, H., Xiong, Q., Wen, J., & Wu, Z. (2016). Dropout prediction inMOOCusing behavior features and multi-view semi-supervised learning. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 3130-3137). doi: https://doi.org/10.1109/IJCNN.2016.7727598

García-Tinizaray, D., Ordoñez-Briceño, K., & Torres-Diaz, J. C. (2015). Learning analytics para predecir la deserción de estudiantes a distancia. Campus virtuales, 3(1), 120-126.

Halawa, S., Greene, D., & Mitchell, J. (2014). Dropout prediction inMOOC using learner activity features. Proceedings of the Second European MOOC Stakeholder Summit, 58-65.

Harzing, AW., Alakangas, S. Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison. Scientometrics 106, 787–804 (2016). https://doi.org/10.1007/s11192-015-1798-9

Henderikx, M. A., Kreijns, K., & Kalz, M. (2017). Refining success and dropout in massive open online courses based on the intention–behavior gap. Distance Education, 38(3), 353-368. doi: https://doi.org/10.1080/01587919.2017.1369006

Hew, K. F. (2016). Promoting engagement in online courses: What strategies can we learn from three highly rated MOOC. British Journal of Educational Technology, 47(2), 320-341. doi: https://doi.org/10.1111/bjet.12235

Himmel, E. (2002). Modelos de análisis de la deserción estudiantil en la educación superior. Calidad de La Educación, 17, 91–107. doi: http://dx.doi.org/10.31619/caledu.n17.409

Hmedna, B., El Mezouary, A. & Baz, O. (2020). A predictive model for the identification of learning styles in MOOC environments. Cluster Comput 23, 1303–1328. doi: https://doi.org/10.1007/s10586-019-02992-4

Jin, C. (2020). MOOC student dropout prediction model based on learning behavior features and parameter optimization. Interactive Learning Environments doi: https://doi.org/10.1080/10494820.2020.1802300

Kember, D. (1989). A longitudinal-process model of drop-out from distance education. The Journal of Higher Education, 60(3), 278–301. doi:https://doi.org/10.1080/00221546.1989.11775036

Kizilcec, R. F., Pérez-Sanagustín, M., & Maldonado, J. J. (2018). Self-regulated learning strategies predict learner behavior and goal attainment in Massive Open Online Courses. Computers & education, 104, 18-33. doi: https://doi.org/10.1016/j.compedu.2016.10.001

Kizilcec, R. F.; Piech, C.; Schneider, E. (2013) “Deconstructing disengagement: analyzing learner subpopulations in massive open online courses”. En Proceedings of the third international conference on Learning Analytics and knowledge, ACM, pp. 170- 179. doi: https://doi.org/10.1145/2460296.2460330

Kloft, M., Stiehler, F., Zheng, Z., & Pinkwart, N. (2014). Predicting MOOC dropout over weeks using machine learning methods. In Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOC (pp. 60-65). doi: 10.3115/v1/W14-4111

Langseth, I., Lysne, D.A., Nykvist, S., Haugsbakken H. (2019) MOOC platforms: A Nordic approach to research informed education in higher education Proceedings of EMOOCs 2019: Work in Progress Papers of the Research, Experience, and Business Tracks at EMOOCs 2019 (CEUR Workshop Proceedings, Volume 2356). Vol. 2356., CEUR Workshop Proceedings, pp.157-162.

Lee, Y., & Choi, J. (2011). A Review of Online Course Dropout Research: Implications for Practice and Future Research. Educational Technology Research and Development, 59(5), 593–618. doi: https://doi.org/10.1007/s11423-010-9177-y

León-Urrutia, M., Vázquez-Cano, E., & López-Meneses, E. (2017). MOOC learning analytics using real-time dynamic metrics. @ tic. revista d'innovació educativa, (18), 3. doi: https://doi.org/10.7203/attic.18.10022

Li, W., Gao, M., Li, H., Xiong, Q., Wen, J., & Wu, Z. (2016). Dropout prediction inMOOCusing behavior features and multi-view semi-supervised learning. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 3130-3137). doi: https://doi.org/10.1109/IJCNN.2016.7727598

Liang, J., Yang, J., Wu, Y., Li, C., & Zheng, L. (2016, April). Big data application in education: dropout prediction in edx MOOC. IEEE Second International Conference on Multimedia Big Data (BigMM) (pp. 440-443). IEEE. doi: 10.1109/BigMM.2016.70

Long, P. y Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review.

Littlejohn, A., Hood, N., Milligan, C., & Mustain, P. (2015). Learning in MOOC: Motivations and self-regulated learning in MOOC. The Internet and Higher Education, 29, 40-48. doi: https://doi.org/10.1016/j.iheduc.2015.12.003

Mengual-Andrés, S. (2013) “Rethinking the role of Higher Education”, Journal of New Approaches in Educational Research, 2 (1), pp. 1-2. doi: 10.7821/naer.2.1.1-2

Mi, F., & Yeung, D. Y. Temporal Models for Predicting Student Dropout in Massive Open Online Courses. 2015 IEEE International Conference on Data Mining Workshop. doi: 10.1109/ICDMW.2015.174. doi: 10.1109/ICDMW.2015.174

Millecamp, M., Gutiérrez, F., Charleer, S., Verbert, K., & De Laet, T. (2018, March). A qualitative evaluation of a learning dashboard to support advisor-student dialogues. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge (pp. 56-60). doi: https://doi.org/10.1145/3170358.3170417

Milligan, C., & Littlejohn, A. (2017). Why study on a MOOC? The motives of students and professionals. The International Review of Research in Open and Distributed Learning, 18(2). doi: https://doi.org/10.19173/irrodl.v18i2.3033

Raffaghelli, J. E., Cucchiara, S., & Persico, D. (2015). Methodological approaches in MOOC research: Retracing the myth of Proteus. British Journal of Educational Technology, 46, 488–509. doi: https://doi.org/10.1111/bjet.12279

Reich J., Ruipérez-Valiente, José A. (2019). The MOOC pivot. Science 11, vol. 363, issue 6423, pp. 130-131. doi: 10.1126/science.aav7958

Rosé, C. P., Carlson, R., Yang, D., Wen, M., Resnick, L., Goldman, P., & Sherer, J. (2014, March). Social factors that contribute to attrition in MOOC. In Proceedings of the first ACM conference on Learning@ scale conference (pp. 197-198). doi: https://doi.org/10.1145/2556325.2567879

Ruipérez-Valiente, J. A. Jenner, M, Staubitz, T, Li, X, Despujol, I (2020). Macro MOOC Learning Analytics: Exploring Trends Across Global and Regional Providers. Learning Analytics & Knowledge Conference 2020. doi: https://doi.org/10.1145/3375462.3375482

Sánchez, J. (2010). Cómo realizar una revisión sistemática y un meta-análisis. Aula Abierta, 38(2).

Sinha, T., Jermann, P., Li, N., & Dillenbourg, P. (2014). Your click decides your fate: Inferring information processing and attrition behavior from mooc video clickstream interactions. arXiv preprint arXiv:1407.7131.

Thurmond, V., & Wambach, K. (2004). Towards an understanding of interactions in distance education. Online Journal of Nursing Informatics, 8(2), 18.

Thurmond, V. A. (2003). Examination of interaction variables as predictors of students' satisfaction and willingness to enroll in future Web-based courses while controlling for student characteristics. Published Dissertation. University of Kansas. Parkland, FL: Dissertation.com. Available online http://www.dissertation.com/library/1121814a.htm

Tinto, V. (1999). Taking retention seriously: Rethinking the first year of college. NACADA Journal, 19(2), 5–9. doi:10.12930/0271-9517-19.2.5

Vázquez Cano, E. & López Meneses, E. (2015). La filosofía educativa de los MOOC y la educación universitaria. RIED. Revista Iberoamericana de Educación a Distancia, 18(2), 25-37. doi: https://doi.org/10.5944/ried.18.2.14261

Veletsianos, G., Collier, A., & Schneider, E. (2015). Digging deeper into learners' experiences in MOOC s: Participation in social networks outside of MOOC s, notetaking and contexts surrounding content consumption. British Journal of Educational Technology, 46(3), 570-587. doi: https://doi.org/10.1111/bjet.12297

Wagner, E. D. (1994). In support of a functional definition of interaction. The American Journal of Distance Education, 8(2), 6-29. doi: https://doi.org/10.1080/08923649409526852

Wang, Y., & Baker, R. (2015). Content or platform: Why do students complete MOOC. MERLOT Journal of Online Learning and Teaching, 11(1), 17-30.

Xing, W., & Du, D. (2018). Dropout Prediction in MOOC: Using Deep Learning for Personalized Intervention. Journal of Educational Computing Research. doi: https://doi.org/10.1177%2F0735633118757015

Ye, C., & Biswas, G. (2014). Early prediction of student dropout and performance in MOOC using higher granularity temporal information. Journal of Learning Analytics, 1(3), 169-172. doi: https://doi.org/10.18608/jla.2014.13.14

Zakharova U.S. (2019) Online Course Production and University Internationalization: Correlation Analysis. Digital Education: At the MOOC Crossroads Where the Interests of Academia and Business Converge. EMOOCs 2019. Lecture Notes in Computer Science, vol 11475. Springer, Cham. https://doi.org/10.1007/978-3-030-19875-6_12

Zawacki-Richter, O., Kerres, M., Bedenlier, S., Bond, M., & Buntins, K. (Eds.). (2020). Systematic Reviews in Educational Research: Methodology, Perspectives and Application. Springer Fachmedien Wiesbaden.






Enllaços refback

  • No hi ha cap enllaç refback.