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Preface

Alfonso Ortega de la Puente and Marina de la Cruz Echeandía

Departamento de Ingeniería Informática
Escuela Politécnica Superior
Universidad Autónoma de Madrid
E-mail: {alfonso.ortega, marina.cruz}@uam.es

This volume aims to provide a state-of-the-art of the work recently done, by
some relevant Spanish Research Groups, in the area of nets of processors.

It could be interesting for a wide spectrum of audience: from mathemati-
cians and linguists to computer scientists that are looking for e�cient new
models of computation to apply to their problems. There is actually no previ-
ous knowledge needed. In a �rst reading, formal de�nitions and results could
be skipped. The rest of the volume is written to be independent and fully
understandable.

The structure of this family of bio-inspired models of computation con-
tains very simple nodes (processors) able to perform very simple operations on
their contents connected in a prede�ned net topology. Although the structure
and operations are very simple (formally, with a bounded expressive power),
it is easy to �nd instances of the model equivalent to Turing machine. This
circumstance allows considering nets of processors as general purpose comput-
ers to solve any computable task. Their intrinsic parallelism makes possible
to write versions of algorithms for classical intractable problems that improve
the (at least temporal) performance.

This volume is structured as follows: �rstly, it introduces the reader in
the formal de�nition and properties of the family, showing, for the �rst time,
a possible full and integrated (Meta) model for the di�erent kind of nets of
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processors currently used. Then, it shows together (again for the �rst time)
results about the design of tools to consider these models as computers (sim-
ulators, programming languages, and some examples of problems solved with
them).

TRIANGLE 7 • March 2012
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Networks of Bio-inspired Processors ?

Fernando Arroyo Montoro1, Juan Castellanos2, Victor Mitrana1, Eugenio
Santos1, José M. Sempere3

1 Departamento Lenguajes, Proyectos y Sistemas Informáticos
Escuela Universitaria de Informática
Universidad Politécnica de Madrid
Madrid, Spain
E-mail: {farroyo,esantos}@eui.upm.es, victor.mitrana@upm.es

2 Departamento de Inteligencia Arti�cial
Universidad Politécnica de Madrid
Madrid, Spain
E-mail: jcastellanos@fi.upm.es

3 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València
Valencia, Spain
E-mail: jsempere@dsic.upv.es

1 Introduction

The goal of this work is twofold. Firstly, we propose a uniform view of three
types of accepting networks of bio-inspired processors: networks of evolution-
ary processors, networks of splicing processors and networks of genetic proces-
sors. And, secondly, we survey some features of these networks: computational

? Work partially supported by the Spanish Ministry of Science and Innovation
under coordinated research project TIN2011-28260-C03-00 and research projects
TIN2011-28260-C03-01, TIN2011-28260-C03-02 and TIN2011-28260-C03-03.
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power, computational and descriptional complexity, the existence of universal
networks, e�ciency as problem solvers and the relationships among them.

These networks are based on a rather common architecture for parallel
and distributed symbolic processing, related to the Connection Machine [28]
and the Logic Flow paradigm [24], and they consist of several processors,
each of which is placed in a node in a virtual complete graph, which can
handle data associated with the respective node. Each node processor acts on
the local data in accordance with some prede�ned rules, and then the local
data become mobile agents which can navigate in the network following a
given protocol. Only that data which is able to pass a �ltering process can
be communicated. This �ltering process may require that some conditions
imposed by the sending processor be satis�ed by the receiving processor or
by both processors. All the nodes simultaneously send their data and the
receiving nodes use a variety of strategies to handle, also simultaneously, all
the arriving messages (see [25, 28]).

The general idea brie�y presented above is modi�ed here using a method
inspired by cell biology. Each processor in a node is very simple, either an
evolutionary, a splicing or a genetic processor. The three types of processors
di�er from each other by the operation they carry out.

By an evolutionary processor we mean a processor which can perform
very simple operations: namely, point mutations in a DNA sequence (inser-
tion, deletion or substitution of a pair of nucleotides). More generally, each
node may be viewed as a cell that contains genetic information encoded in
DNA sequences which may evolve by local evolutionary events: that is, point
mutations. Each node is specialized for just one of these evolutionary opera-
tions.

By a splicing processor we mean a processor that can perform the splicing
operation which is one of the basic mechanisms by which the DNA sequences
are recombined under the e�ect of enzymatic activities.

By a genetic processor we mean a processor that can perform two di�er-
ent types of operations: either a pure mutation operation (i.e. the substitution
operation in the evolutionary processors) or a full and massive crossover op-
eration between strings which can be considered as a splicing operation with
null contexts between strings.

Furthermore, the data in each node is organized in the form of multisets
of words (each word appears in an arbitrarily large number of copies), and all
copies are processed in parallel such that all the possible events that can take
place do actually take place.

TRIANGLE 7 • March 2012



Networks of Bio-Inspired Processors 5

A series of papers was devoted to di�erent variants of this model viewed
as language generating devices (see [2, 3, 4, 5, 6, 12, 13, 17, 19]). The pa-
per [42] is an early survey in this area. Similar ideas may be found in other
bio-inspired models: for example, tissue-like membrane systems [51] or mod-
els from Distributed Computing area like parallel communicating grammar

systems [47].

2 Basic De�nitions

We start by summarizing the notions used throughout the paper. An alphabet

is a �nite and nonempty set of symbols. The cardinality of a �nite set A is
written card(A). Any sequence of symbols from an alphabet V is called word
over V . The set of all words over V is denoted by V ∗ and the empty word is
denoted by ε. The length of a word x is denoted by |x| while alph(x) denotes
the minimal alphabet W such that x ∈W ∗.

In the course of its evolution, the genome of an organism mutates by di�er-
ent processes. At the level of individual genes the evolution proceeds by local
operations (point mutations) which substitute, insert and delete nucleotides
of the DNA sequence. In what follows, we de�ne some rewriting operations
that will be referred to as evolutionary operations since they may be viewed
as linguistic formulations of local gene mutations. We say that a rule a → b,
with a, b ∈ V ∪ {ε} is a substitution rule if both a and b are not ε; it is a
deletion rule if a 6= ε and b = ε; it is an insertion rule if a = ε and b 6= ε.
The set of all substitution, deletion, and insertion rules over an alphabet V
are denoted by SubV , DelV , and InsV , respectively.

Given a rule σ as above and a word w ∈ V ∗, we de�ne the following actions
of σ on w:

• If σ ≡ a→ b ∈ SubV , then σ∗(w) =
{
{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise.

Note that a rule such as the one above is applied to all occurrences of
the letter a in di�erent copies of the word w. An implicit assumption is that
arbitrarily many copies of w are available.

TRIANGLE 7 • March 2012



6 F. Arroyo Montoro et al.

• If σ ≡ a→ ε ∈ DelV , then σ∗(w) =
{
{uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{
{u : w = ua},
{w}, otherwise

σl(w) =
{
{v : w = av},
{w}, otherwise

• If σ ≡ ε→ a ∈ InsV , then σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)},
σr(w) = {wa}, σl(w) = {aw}.

α ∈ {∗, l, r} expresses the way a deletion or insertion rule is applied to a word,
namely at any position (α = ∗), in the left (α = l), or in the right (α = r) end
of the word, respectively. The note for the substitution operation mentioned
above remains valid for insertion and deletion at any position. For every rule
σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we de�ne the α-action of σ on L by
σα(L) =

⋃
w∈L σ

α(w). Given a �nite set of rules M , we de�ne the α-action
of M on the word w and the language L by:

Mα(w) =
⋃
σ∈M

σα(w) and Mα(L) =
⋃
w∈L

Mα(w),

respectively.
For two disjoint and nonempty subsets P and F of an alphabet V and a

word z over V , we de�ne the following two predicates

rcs(z;P, F ) ≡ P ⊆ alph(z) ∧ F ∩ alph(z) = ∅
rcw(z;P, F ) ≡ alph(z) ∩ P 6= ∅ ∧ F ∩ alph(z) = ∅.

The construction of these predicates is based on context conditions de-
�ned by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, both conditions require that no forbidding symbol
be present in w; furthermore the �rst condition requires all permitting sym-
bols to appear in w, while the second one requires at least one permitting
symbol to appear in w. It is plain that the �rst condition is stronger than the
second one.

For every language L ⊆ V ∗ and β ∈ {s, w}, we de�ne:

rcβ(L,P, F ) = {z ∈ L | rcβ(z;P, F )}.

An evolutionary processor over V is a 5-tuple (M,PI, FI, PO, FO), where:

TRIANGLE 7 • March 2012



Networks of Bio-Inspired Processors 7

� Either (M ⊆ SubV ) or (M ⊆ DelV ) or (M ⊆ InsV ). The set M repre-
sents the set of evolutionary rules of the processor. As can be seen, a processor
is �specialized� in one evolutionary operation only.

� PI, FI ⊆ V are the input permitting/forbidding contexts of the proces-
sor, while PO,FO ⊆ V are the output permitting/forbidding contexts of the
processor (with PI ∩ FI = ∅ and PO ∩ FO = ∅).

An evolutionary processor such as the one above with PI = PO = P and
FI = FO = F is called a uniform evolutionary processor and is de�ned as
the triple (M,P, F ). We denote the set of (uniform) evolutionary processors
over V by (U)EPV . Clearly, the (uniform) evolutionary processor described
here is a mathematical concept similar to that of an evolutionary algorithm,
both being inspired by Darwinian evolution. As we have mentioned above,
the rewriting operations we have considered might be interpreted as muta-
tions and the �ltering process described might be viewed as a selection pro-
cess. Recombination is missing but evolutionary and functional relationships
between genes can be captured by taking only local mutations into consider-
ation [57]. However, another type of processor based on recombination only,
called a splicing processor, has been the focus of a series of studies which will
be surveyed in the sections below.

3 Three Variants of Accepting Networks of Evolutionary
Processors

An accepting network of evolutionary processors (ANEP for short) is an 8-
tuple Γ = (V,U,G,N, α, β, xI , xO), where:

• V and U are the input and network alphabets, respectively, V ⊆ U .
• G = (XG, EG) is an undirected graph without loops with the set of ver-

tices XG and the set of edges EG. G is called the underlying graph of the
network.

• N : XG −→ EPU is a mapping which associates each node x ∈ XG with
the evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on
the words existing in that node.

• β : XG −→ {s, w} de�nes the type of the input/output �lters of a node.
More precisely, for every node, x ∈ XG, the following �lters are de�ned:

TRIANGLE 7 • March 2012



8 F. Arroyo Montoro et al.

input �lter: ρx(·) = rcβ(x)(·;PIx, F Ix),
output �lter: τx(·) = rcβ(x)(·;POx, FOx).

That is, ρx(w) (resp. τx) indicates whether or not the word w can pass the
input (resp. output) �lter of x. Moreover, ρx(L) (resp. τx(L)) is the set of
words of L that can pass the input (resp. output) �lter of x.

• xI , xO ∈ XG are the input and the output node of Γ , respectively.

An Accepting Network of Uniform Evolutionary Processors (UANEP for
short) is an ANEP with uniform evolutionary processors only.

We say that card(XG) is the size of Γ . If α and β are constant functions,
then the network is said to be homogeneous. In the theory of networks some
types of underlying graphs are common (for example rings, stars, grids, etc.).
In most of the cases considered here, we focus on complete networks (i.e., net-
works having a complete underlying graph). The last section is an exception,
as we discuss an incomplete [U]ANEP that simulates a given ANEPFC (see
the meaning of the abbreviation ANEPFC in the next subsection).

A con�guration of an [U]ANEP Γ as above is a mapping C : XG −→ 2V
∗

which associates a set of words with every node of the graph. A con�guration
may be understood as the sets of words which are present in any node at a
given moment. Given a word w ∈ V ∗, the initial con�guration of Γ on w is
de�ned by C(w)

0 (xI) = {w} and C(w)
0 (x) = ∅ for all x ∈ XG − {xI}.

When changed for an evolutionary step, each component C(x) of con�g-
uration C is changed in accordance with the set of evolutionary rules Mx

associated with node x and the way the rules α(x) are applied. Formally, we
say that con�guration C ′ is obtained in one evolutionary step from con�gu-
ration C, written as C =⇒ C ′, i�

C ′(x) = Mα(x)
x (C(x)) for all x ∈ XG.

When changed for a communication step, each node processor x ∈ XG

sends one copy of each word it has which can pass the output �lter of x to all
the node processors connected to x. And it receives all the words sent by any
node processor connected with x providing that they can pass its input �lter.
Formally, we say that con�guration C ′ is obtained in one communication step

from con�guration C, written as C ` C ′, i�

C ′(x) = (C(x)− τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y)))

for all x ∈ XG. Note that words which leave a node are removed from that
node. If they cannot pass the input �lter of any node, they are lost.
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Networks of Bio-Inspired Processors 9

A model closely related to that of ANEPs, introduced in [23] and further
studied in [22, 31], is that of accepting networks of evolutionary processors

with �ltered connections (ANEPFCs for short). An ANEPFC may be viewed
as an ANEP in which the �lters are shifted from the nodes on the edges.
Therefore, instead of having a �lter at both ends of an edge in each direction,
there is only one �lter independently of the direction.

An ANEPFC is a 9-tuple

Γ = (V,U,G,R,N , α, β, xI , xO),

where:

• V , U , G = (XG, EG), have the same meaning as for ANEP,
• R : XG −→ 2SubU ∪ 2DelU ∪ 2InsU is a mapping which associates each

node with the set of evolutionary rules that can be applied in that node.
Note that each node is associated only with one type of evolutionary rules:
namely, for every x ∈ XG either R(x) ⊂ SubU or R(x) ⊂ DelU or R(x) ⊂
InsU holds.

• α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on
the words existing in that node.

• N : EG −→ 2U ×2U is a mapping which associates each edge e ∈ EG with
the permitting and forbidding �lters of that edge; formally,N (e) = (Pe, Fe),
with Pe ∩ Fe = ∅.

• β : EG −→ {s, w} de�nes the �lter type of an edge.
• xI , xO ∈ XG are the input and the output node of Γ , respectively.

Note that every ANEPFC can be immediately transformed into an equiv-
alent ANEPFC with a complete underlying graph by adding the edges that
are missing and associating with them �lters that do not allow any words to
pass. Note that such a simpli�cation is not always possible for ANEPs.

A con�guration of an ANEPFC is de�ned in the same way as the con�g-
uration of an ANEP (see above). An evolutionary step is also de�ned in the
same way as above.

Otherwise, when changed for a communication step, in an ANEPFC, each
node-processor x ∈ XG sends one copy of each word it contains to every
node-processor y connected to x, provided they can pass the �lter of the edge
between x and y. It keeps no copy of these words but receives all the words
sent by any node processor z connected with x providing that they can pass
the �lter of the edge between x and z. In this case, no word is lost.

Let Γ be an [U]ANEP[FC], the computation of Γ on the input word
w ∈ V ∗ is a sequence of con�gurations C(w)

0 , C
(w)
1 , C

(w)
2 , . . . , where C(w)

0 is
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the initial con�guration of Γ de�ned by C(w)
0 (xI) = w and C(w)

0 (x) = ∅ for all
x ∈ XG, x 6= xI , C

(w)
2i =⇒ C

(w)
2i+1 and C(w)

2i+1 ` C
(w)
2i+2, for all i ≥ 0. Note that

the con�gurations are changed by alternative evolutionary and communica-
tion steps. By the previous de�nitions, each con�guration C

(w)
i is uniquely

determined by con�guration C(w)
i−1.

A computation halts (and it is said to be halting) if one of the following
two conditions holds:

(i) There exists a con�guration in which the set of words existing in
the output node xO is non-empty. In this case, the computation is said to be
an accepting computation.

(ii) There exist two identical con�gurations obtained either in consec-
utive evolutionary steps or in consecutive communication steps.

The language accepted by the [U]ANEP[FC] Γ is La(Γ ) = {w ∈ V ∗ | the
computation of Γ on w is an accepting one}.We denote by L([U ]ANEP [FC])
the class of languages accepted by [U]ANEP[FC]s.

We say that an [U]ANEP[FC] Γ decides the language L ⊆ V ∗, and write
L(Γ ) = L i� La(Γ ) = L and the computation of Γ on every x ∈ V ∗ halts.

3.1 Computational power of [U]ANEP[FC]s

The results obtained so far ([40, 38, 22, 23]) state that non-deterministic
Turing machines can be simulated by ANEPs and ANEPFCs.

Therefore we have:

Theorem 1. Both L(ANEP ) and L(ANEPFC) equal the class of recur-

sively enumerable languages.

It is clear that �lters associated with each node of an ANEP allow the
computation to be closely controlled. However, by moving the �lters from the
nodes to the edges, the possibility of controlling the computation seems to
be diminished. For instance, data cannot be lost during the communication
steps. In spite of this, we have seen that ANEPFCs are still computationally
complete. This means that moving the �lters from the nodes to the edges does
not decrease the computational power of the model. Although the two variants
are equivalent from the point of view of computational power, a direct proof
would have been worthwhile. In [8] it was shown that the two models can
e�ciently simulate each other: namely, each computational step in one model
is simulated in a constant number of computational steps in the other. This
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is particularly useful when the solution of a problem needs to be translated
from one model to the other. Note that a translation via a Turing machine, by
the constructions shown in [40, 38, 22, 23] squares the time complexity of the
new solution. A natural question arises: What is the computational power of
UANEPs? The answer was given in [9] where the time complexity preserving
simulation between ANEPs and ANEPFCs was extended to UANEPs. More
precisely, it was shown that each pair of networks among the three variants
e�ciently simulates each other. Consequently, we can state the �rst main
result of this section:

Theorem 2.

1. Each class L([U ]ANEP [FC]) equals the class of recursively enumerable

languages.

2. Each pair of networks among the three variants e�ciently simulates each

other.

These results can be improved by showing that each recursively enumer-
able language can be accepted by an ANEP[FC] of constant size. More pre-
cisely:

Theorem 3. [32, 31, 6]
1. Every recursively enumerable language can be accepted by an ANEP of size

7.

2. Every recursively enumerable language can be accepted by an ANEPFC of

size 16.

The second result can be extended to characterize the class NP. Although
the �rst result cannot be extended to a similar succinct characterization of
NP, as the proof in [6] is based on the simulation of a phrase-structure gram-
mar, such a succinct characterization of NP is proposed in [32, 31].

Theorem 4.

1. A language is in NP if and only if it is accepted by an ANEP of size 10 in

polynomial time.

2. A language is in NP if and only if it is accepted by an ANEPFC of size

16 in polynomial time.

We do not know whether similar results like those in Theorems 3 or 4
holds for UANEPs.
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4 Accepting Networks of Splicing Processors

In the case of Accepting Networks of Splicing Processors (ANSP for short),
the point mutations associated with each node are replaced by the missing
operation (recombination), which is present here in the form of splicing. This
computing model is to some extent similar to the test tube distributed systems
based on splicing introduced in [16] and further explored in [48]. However,
there are several di�erences: �rst, the model proposed in [16] is a language
generating mechanism while ours is an accepting one; second, we use a single
splicing step, while every splicing step in [16] is actually an in�nite process
consisting of iterated splicing steps; third, each splicing step in our model
is re�exive; fourth, the �lters of our model are based on random context
conditions while those in [16] are based on membership conditions; �fth, at
every splicing step a set of auxiliary words, always the same and particular to
every node, is available for splicing. Along the same lines, we should stress the
di�erences between this model and the time-varying distributed H systems, a
generative model introduced in [50] and further studied in [41, 49, 46]. The
computing strategy of such a system is that the passing of words from a set of
rules to another one is speci�ed by a cycle. Only those words that are obtained
at one splicing step by using a set of rules are passed in a circular way to the
next set of rules. This means that words which cannot be spliced at some step
disappear from the computation while words produced at di�erent splicing
steps cannot be spliced together. Now, the di�erences between time-varying
distributed H systems and ANSPs are evident: each node of an ANSP has a
set of auxiliary words, words obtained at di�erent splicing steps in di�erent
nodes can be spliced together, words are not communicated in a circular way,
since identical copies of the same word are sent out to all the nodes, the
communication is controlled by �lters.

A splicing rule over a �nite alphabet V is a word of the form u1#u2$v1#v2
such that u1, u2, v1, and v2 are in V ∗ and such that $ and # are two symbols
not in V .

For a splicing rule r = u1#u2$v1#v2 and for x, y, w, z ∈ V ∗, we say that
r produces (w, z) from (x, y) (denoted by (x, y) `r (w, z)) if there exist some
x1, x2, y1, y2 ∈ V ∗ such that x = x1u1u2x2, y = y1v1v2y2, z = x1u1v2y2, and
w = y1v1u2x2.

For a language L over V and a set of splicing rules R we de�ne

σR(L) = {z, w ∈ V ∗ | (∃u, v ∈ L, r ∈ R)[(u, v) `r (z, w)]}.
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A splicing processor over V is a 6-tuple (S,A, PI, FI, PO, FO), where S a
�nite set of splicing rules over V , A a �nite set of auxiliary words over V ,
and all the other parameters have the same meaning as in the de�nition
of evolutionary processors. Now an ANSP can be de�ned in the same way
as an ANEP except that the processors associated with nodes are splicing
processors.

A con�guration of an ANSP Γ is a mapping C : XG → 2U
∗
which asso-

ciates a set of words to every node of the graph. By convention, the auxiliary
words do not appear in any con�guration.

There are two ways to change a con�guration: by a splicing step or by
a communication step. When a splicing step is used, each component C(x)
of the con�guration C is changed according to the set of splicing rules Sx,
whereby the words in set Ax are available for splicing. Formally, con�guration
C ′ is obtained in one splicing step from con�guration C, written as C ⇒ C ′,
i� for all x ∈ XG

C ′(x) = σSx(C(x) ∪Ax).

Since each word present in a node, as well as each auxiliary word, appears
in an arbitrarily large number of identical copies, all possible splicings are
assumed to be done in one splicing step. If the splicing step is de�ned as
C =⇒ C ′, i�

C ′(x) = Sx(C(x), Ax) for all x ∈ XG,

then all processors of Γ are called restricted and Γ itself is said to be restricted.
A communication step and the language accepted/decided by an ANSP are

de�ned in the same way as those for ANEP. The de�nitions of the complex-
ity classes de�ned on ANEPs can be straightforwardly carried over ANSPs.
On the other hand, accepting networks of splicing processors with �ltered
connections (ANSPFC) are de�ned similarly to ANEPFCs.

4.1 Computational power of ANSP[FC]s

The main result in [37, 36] is:

Theorem 5.

1. Each recursively enumerable language L is accepted by a restricted ANSP

of size 7.

2. Each NP language L is accepted by a restricted ANSP of size 7 in polyno-

mial time.
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We should point out that only the rules in the node input node depend on the
language L, and the encoding that we use for its symbols while the parameters
of the other nodes do not depend in any way on language L. If we allow all
the parameters of the networks to depend on the given language, we have

Theorem 6. [30]
1. All recursively enumerable languages are accepted by ANSPs of size 2.
2. All languages in NP can be accepted by ANSPs of size 3 working in poly-

nomial time.

Note that the ANSPs in the last theorem are not necessarily restricted.
Since, by de�nition, ANSPs need at least two nodes to accept any non-trivial
language, these results go a long way to settling this issue, although they
do leave one problem unsolved: the e�cient simulation of non-deterministic
Turing machines by ANSPs with two nodes.

As far as the computational power of ANSPFCs is concerned, a complete
characterization is reported in [14]:

Theorem 7.

1. A language is recursively enumerable if and only if it is accepted by a

restricted ANSPFC of size 4.

2. A language is in NP if and only if it is accepted by a restricted ANSPFC

of size 4 in polynomial time.

5 Problem Solving with [U]ANEP[FC]s/ANSP[FC]s

Although the results in the previous sections state that every problem in
NP can be solved in polynomial time using di�erent variants of accepting
networks, the results are obtained by simulating a nondeterministic Turing
machine; thus we still have to obtain a classic solution to a problem, and
then translate it in terms of [U]ANEP[FC]s/ANSP[FC]s. To overcome this
drawback, a series of papers discussed how [U]ANEP[FC]s and ANSP[FC]s
can be viewed as problem solvers.

Recall that a possible correspondence between decision problems and lan-
guages can be made via an encoding function which transforms an instance
of a given decision problem into a word (see, e.g., [26]). We say that a de-
cision problem P is solved in time O(f(n)) by [U]ANEP[FC]s/ANSP[FC]s if
there exists a family G of [U]ANEP[FC]s/ANSP[FC]s such that the following
conditions are satis�ed:
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1. The encoding function of any instance p of P with size n can be computed
by a deterministic Turing machine in time O(f(n)).

2. For each instance p of size n of the problem one can e�ectively construct,
in time O(f(n)), an [U]ANEP[FC]/ANSP[FC] Γ (p) ∈ G which decides,
again in time O(f(n)), the word encoding the given instance. This means
that the word is decided if and only if the solution to the given instance
of the problem is �YES�. This e�ective construction is called an O(f(n))
time solution to the problem.

If the [U]ANEP[FC]/ANSP[FC] Γ ∈ G constructed above decides the lan-
guage of words encoding all instances of the same size n, then the construction
of Γ is called a uniform solution. Intuitively, a solution is uniform if for prob-
lem size n, we can construct a unique [U]ANEP[FC]/ANSP[FC] that solves
all instances of size n taking the (reasonable) encoding of instance as �input�.

The paper [34] proposes using ANEPs to provide uniform linear time so-
lutions to the 3-CNF-SAT and Hamiltonian Path; in [38] a uniform linear
solution to the Vertex-Cover problem is proposed. And [23] proposes another
uniform linear time solution to the Vertex-Cover problem, solved this time by
ANEPFCs. Uniform linear time solutions to the SAT and Hamiltonian Path
problems with ANSPs and ANSPFCs are discussed in [33].

6 Accepting Networks of Genetic Processors

The third case that we refer to in this work is the Accepting Networks of
Genetic Processors (ANGP). Here, there are two sources of inspiration: the
classical paradigm of Genetic Algorithms and Evolutionary Computation [43],
and the models of Evolutionary or Splicing processors mentioned above. A ge-
netic processor can perform one of the following two operations: (1) Mutation
between symbols (here, the substitution operation in the evolutionary proces-
sors can be considered), and (2) Pure and massive crossover (which can be
considered as the splicing operation by taking empty contexts). Observe that
both operations were considered in the past as the main ingredients of genetic
algorithms. Despite this, ANGP di�ers from classical Genetic Algorithms in
two aspects: �rst, ANGP consists of a �nite number of processors that run in
parallel independently, so they should be considered as a full parallel scheme
for genetic algorithms [1]; and second, the model is an acceptation model not
an optimization one (like genetic algorithms). Nevertheless, ANGP could be
modi�ed to tackle optimization problems instead of acceptation ones.
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For any alphabet V , the mutation rules take the form a→ b, with a, b ∈ V ,
and they can be applied over the string xay to produce the new string xby.
The crossover operation is de�ned as follows: Let x and y be two strings, then
x ./ y = {x1y2, y1x2 : x = x1x2 and y = y1y2}. Observe that x, y ∈ x ./ y
given that we can take ε to be a part of x or y. In addition, the crossover
operation can be extended over languages in the usual form.

A genetic processor over V is a tuple (MR, A, PI, FI, PO, FO, α, β), where
MR is a �nite set of mutation rules over V , A is a multiset of strings over V
with a �nite support and an arbitrary large number of copies of every string,
PI, FI ⊂ V ∗ are the input permitting/forbidding contexts, PO,FO ⊂ V ∗

are the output permitting/forbidding contexts, α ∈ {1, 2} de�nes the working
mode with the following values

• If α = 1 the processor applies mutation rules
• If α = 2 the processor applies crossover rules and MR = ∅

and β ∈ {(s), (w)} de�nes the type of the input/output �lters of the
processor. Here, s means the strong predicate rcs(·;P, F ) as de�ned in the
evolutionary case, and w the weak predicate denoted by rcw(·;P, F ). Never-
theless, given that P, F ⊂ V , the previous predicates will be de�ned over the
segments of a given string instead of its symbols.

An Accepting Network of Genetic Processors is de�ned as in the previous
models of ANEPs and ANSPs. The acceptance criterion, the con�guration of
the network and the alternation between communication steps and genetic

steps are de�ned as in the previous models.
With respect to the completeness of the ANGP model, we have the fol-

lowing result.

Theorem 8. [10] Every recursively enumerable language can be accepted by

an ANGP.

The proof of the previous result is approached in a non-uniform manner.
Hence, one can construct in polynomial time an ANGP that simulates the
computation of an arbitrary Turing machine with an arbitrary input string
(no matter its length). Given that the previous simulation works in polynomial
time depending on the length of the input string (provided that we take into
account the number of genetic and communication steps), the following result
comes easily by simulating a nondeterministic Turing machine.
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Theorem 9. [10] Every language in NP can be accepted/decided in polyno-

mial time by an ANGP.

Observe that no results have been obtained to de�ne the description com-
plexity of this model. Nevertheless, a formal proof that 16 genetic processors
are su�cient to generate any recursively enumerable language is provided in
[11]. So, it is expected that further results of the descriptive complexity of
ANGPs will be provided shortly.

7 Towards an Unifying Model

We have presented three di�erent models of Accepting Networks of Bio-
inspired processors. They have common characteristics and features that point
to a model which can be formally de�ned. They share the following aspects
and, probably, new models will be formulated in the near future:

1. A �nite set of processors that apply operations over strings which have
been inspired by biomolecular functions and operations in nature. The
processors work with a multiset of strings.

2. A connection topology between processors in the form of a network.
3. A set of (input/output) �lters which can be attached to the processors or

to the connections.

A biologically inspired processor with �lters, over an alphabet V , can be
de�ned as the tuple (op, PI, FI, PO, FO), where op is a biologically inspired
operation over strings and the rest of the elements have been de�ned in the
evolutionary processors.

The following table shows some of the operations that we have de�ned in
this study and others which can be used instead of the operations that have
been de�ned previously.
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insertion Insert a symbol into a string
deletion Delete a symbol from a string
substitution (mutation) Substitute a symbol into a string
splicing Splicing rules
crossover Full massive splicing with empty context
hairpin completion Hairpin completion from folded strings [15, 52]

superposition
Complementarity completion from double
stranded strings [7]

loop and double loop

recombination
DNA recombination based on gene assembly [54]

inversion, duplication

and transposition

DNA fragments modi�cation as operations over
substrings [29, 18]

Table 1: Some operations which can be inserted into biologically

inspired processors

Once we have introduced a generalization of previously de�ned processors,
an Accepting Network of Bio-inspired Processors (ANBP) can be de�ned as
the tuple Γ = (V,U,G,N, α, β, xI , xO), where the di�erence with respect to
ANEPs is that the function N associates a biologically inspired processor to
every vertex in the connection graph.

Here, we describe a new framework that should be studied in depth. In
particular the following questions should be addressed:

• Some of the operations shown in Table 1, do not have computational com-
pleteness (i.e. they do not characterize recursively enumerable languages).
We can combine some of these operations by inserting them into di�erent
processors. It is natural to ask whether computational completeness could
be achieved for some combinations of operations, and what the minimal
combination is to achieve it.

• Filtered connections have been proposed for ANEPs while other models
consider only �ltered processors. The transformation of �ltered processors
into �ltered connections should be explored in the di�erent combinations
of operations. Furthermore, we could provide a pure hybrid network where
di�erent types of �lters (connections or processors) work together.
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1 Motivation

A great deal of research e�ort is currently being made in the realm of so called
�natural computing�. �Natural computing� mainly focuses on the de�nition,
formal description, analysis, simulation and programming of new models of
computation (usually with the same expressive power as Turing Machines)
inspired by Nature, which makes them particularly suitable for the simulation
of complex systems.
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Some of the best known natural computers are Lindenmayer systems (L-
systems, a kind of grammar with parallel derivation), cellular automata, DNA
computing, genetic and evolutionary algorithms, multi agent systems, arti�-
cial neural networks, P-systems (computation inspired by membranes) and
NEPs (or networks of evolutionary processors). This chapter is devoted to
this last model.

There are two main areas in which these models could be useful: as new
architectures for computers, other than von Neumann's machine; and as mod-
elling tools to simulate complex systems for which �conventional approaches"
(usually based on di�erential equations) are, in practice, di�cult to handle.

Two steps are needed in both scenarios:

1. design a particular instance of the model able to solve the task under
study (this step is equivalent to �programming� the model) and

2. �run� the model.

Several attemps have been made to build hardware devices to support
these bio-inspired models. Some research groups are currently implementing
in silico the basic components of P-systems [19]. [38] describes other examples
of hardware implementations of cellular automata, CAM-6 and its derivatives,
that have been used for the simulation of complex systems (see [36]). But,
unfortunately there are no real computers for almost all bio-inspired models.
So, step 2 usually involves simulating the model in a �conventional� (von
Neumann) computer.

Informally, and assuming that NP (nondeterministic polynomial time) 6=
P, NP is a complexity that includes those problems whose solution by means
of algorithms run on conventional computers requires more than polynomial

time. We can informally understand more than polynomial as exponential.
One of the most interesting features of these bio-inspired computers is their
intrinsic parallelism. We can design algorithms for them that could improve
the exponential performance of their classic versions. Nevertheless, when the
models have to be simulated on conventional computers, the total amount of
space needed to simulate the model and to actually run the algorithm usu-
ally becomes exponential. This may be one of the main reasons why natural
computers are not widely used to solve real problems. Most of the simulators
are not able to handle the size of non trivial problems. Grid, cloud compu-
tation and clusters o�er an interesting and promising option to overcome the
drawbacks of both solutions: �speci�c� hardware, and simulators run on von
Neumann's machines.
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There are several research groups interested in programming tools for natu-
ral computers. These tools include textual and visual programming languages,
compilers, sequential and parallel simulators.

P-Lingua ([21] and http://www.p-lingua.org) is a programming lan-
guage for membrane computing which aims to be a standard to de�ne P
systems. One of its main characteristics is to remain as close as possible to
the formal notation used in the literature to de�ne P systems. Once he has
formalized his P systems, the programmer does not need any additional ef-
fort to describe them with P-Lingua. P-Lingua is also the name of a software
package that includes several built-in simulators for each supported model, as
well as the compilers needed to simulate P-Lingua programs.

One of the current topics of interest of the authors of this chapter is the
development of programming tools for NEPs, which will be brie�y described
in the following paragraphs.

This chapter is structured as follows:

1. We describe our approaches to simulate NEPs:
• jNEP, a Java multitreaded NEPs simulator
• The simulation of NEPs on massively parallel platforms

2. We describe some graphical tools for designing NEPs:
• We describe our graphical viewer for the simulation of jNEP

(jNEPView)
• We also describe our visual programming language for NEPs

(NEPsVL)
3. With respect to other tools for designing NEPs, we introduce NEPsLin-

gua, our textual language for NEPs inspired by P-Lingua.

We should point out that this chapter brings together some work previously
published earlier. All the references are placed in the corresponding section.

2 Simulation of NEPs

jNEP: a Java NEP simulator

Current research on NEPs focuses mainly on the de�nition of di�erent fami-
lies and on the study of their formal properties, such as their computational
completeness and their ability to solve NP problems with polynomial perfor-
mance. However, apart from [26], little e�ort has been made to develop a NEP
simulator for any kind of implementation. Unfortunately, this software hardly
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restricts the general model because it only allows one kind of rules and �lters
and, what is more important, violates two of the main principles of the model:

1. NEP's computation should not be deterministic and
2. Evolutionary and communication steps should alternate strictly.

In addition, the software focuses on solving decision problems in a parallel
way, rather than on providing the researchers with a general simulator for
any kind of NEPs.

jNEP tries to �ll this gap in the literature. It is a program written in Java
which can simulate simulate almost any NEP in the literature. In order to be
a valuable tool for the scienti�c community, it has been developed under the
following principles:

a) It rigorously complies with the formal de�nitions found in the literature.
b) It serves as a general tool, by allowing the use of the di�erent NEP variants

and is ready to adapt to future possible variants, as the research in the
area advances.

c) It exploits as much as possible the inherent parallel/distributed nature of
NEPs.

The jNEP code is freely available in http://jnep.e-delrosal.net.

jNEP design

jNEP provides an implementation of NEPs as general, �exible and rigorous
as has been described in the previous paragraphs. As shown in �gure 1, the
design of the NEP class mimics the NEP model de�nition. In jNEP, a NEP
is composed of evolutionary processors and an underlying graph (attribute
edges) to de�ne the net topology and the allowed inter processor interactions.
The NEP class coordinates the main dynamic of the computation and rules
the processors (instances of the EvolutionaryProcessor class), forcing them
to perform alternate evolutionary and communication steps. It also stops the
computation when needed. The core of the model includes these two classes,
together with the Word class, which handles the manipulation of words and
their symbols.

We keep jNEP as general and rigorous as possible by means of the follow-
ing mechanisms: Java interfaces and di�erent versions to widely exploit the
parallelism available in the hardware platform.

jNEP o�ers three interfaces:
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Fig. 1. Simpli�ed class diagram of jNEP
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a) StoppingCondition, which provides the method stop to determine whether
a NEP object should stop according to its state.

b) Filter, whose method applyFilter determines which objects of class Word

can pass.
c) EvolutionaryRule, which applies a Rule to a set of Words to get a new set.

jNEP tries to implement a wide set of NEPs' features. The jNEP user

guide (http://jnep.e-delrosal.net) contains the updated list of �lters, evolu-
tionary rules and stopping conditions implemented.

Currently jNEP has two lists of choices to select the parallel/distributed
platform on which it runs (any combination of them is also available in
http://jnep.e-delrosal.net). Concurrency is implemented by means of two dif-
ferent Java approaches: Threads and Processes. The �rst needs more complex
synchronization mechanisms. The second uses heavier concurrent threads. The
supported platforms are standard JVM and clusters of computers (by means
of JavaParty).

More precisely, in the case of the Processes option each processor in the net
is actually an independent program in the operating system. The communica-
tion between nodes is carried out through the standard input/output streams
of the program. The class NEP has access to those streams and coordinates the
nodes. The mandatory alternation of communication and evolutionary steps
in the computations of NEPs greatly eases their synchronization and com-
munication. The following protocol has been followed for the communication
step:

1 NEP class sends the message to communicate to every node in the graph.
Then it waits for responses.

2 All node �nish their communication step after sending the words that pass
their outputs �lters. Then, they indicate to the NEP class that they have
�nished the communication step.

3 The NEP class moves all the words from the net to the input �lters of the
corresponding nodes.

The evolutionary step is synchronized by means of an initial message sent
by the NEP class to make all the nodes evolve. Afterwards, the NEP class
waits until all the nodes �nish.

The implementation with Java Threads has other implications. In this
option, each processor is an object of the Java Thread class. Thus, each pro-
cessor execute its tasks in parallel as independent lines, although they all
belong to the same program. Data exchange between them is performed by
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direct access to memory. The principles of communication and coordination
are the same as in the previous option. The main di�erence is that, instead
of waiting for all the streams to �nish or to send a certain message, Threads
are coordinated by means of basic concurrent programming mechanisms as
semaphores, monitors, etc.

In conclusion, jNEP is a very �exible tool that can run in many di�erent
environments. Depending on the operating system, the Java Virtual Machine
used and the concurrency option chosen, jNEP will work in a slightly di�erent
manner. Users should select the best combination for his needs.

Nevertheless, the peculiarities of Java (the JVM can be considered an
intermediate layer of middleware between the source code and the operating
system) makes it di�cult to adjust all the details of the parallel simulation.
This is why we have decided to explore other approaches that will be shown
in the following sections.

Using jNEP

jNEP is written in Java therefore to run jNEP one needs a Java virtual ma-
chine (version 1.4.2 or above) installed in a computer. Then one has to write
a con�guration �le describing the NEP. The jNEP user guide (available at
http://jnep.e-delrosal.net) contains the details concerning the commands and
requirements needed to launch jNEP. In this section, we focus on the con�g-
uration �le which has to be written before running the program, since it has
some complex aspects important to be aware of the potentials and possibilities
of jNEP.

The con�guration �le is an XML �le specifying all the features of the NEP.
Its syntax is described below in BNF format, together with a few explana-
tions. Since BNF grammars are not capable of expressing context-dependent
aspects, context-dependent features are not described here. Most of them have
been explained informally in the previous sections. Note that the traditional
characters <> used to identify non-terminals in BNF have been replaced by
[] to prevent confusion with the use of the <> characters in the XML format.

- [con�gFile] ::= <?xml version="1.0"?> <NEP nodes=�[integer]�> [alphabetTag] [graphTag] [pro-
cessorsTag] [stoppingConditionsTag] </NEP>

- [alphabetTag] ::= <ALPHABET symbols=�[symbolList]�/>
- [graphTag] ::= <GRAPH> [edge] </GRAPH>

- [edge] ::= <EDGE vertex1=�[integer]� vertex2=�[integer]�/> [edge]
- [edge] ::= λ
- [processorsTag] ::= <EVOLUTIONARY_PROCESSORS> [nodeTag]

</EVOLUTIONARY_PROCESSORS>
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The above rules show the main structure of the NEP: the alphabet, the
graph (speci�ed through its vertices) and the processors. It is worth remember-
ing that each processor is identi�ed implicitly by its position in the processors
tag (�rst is number 0, second is number 1, and so on).

- [stoppingConditionsTag] ::= <STOPPING_CONDITION> [conditionTag]
</STOPPING_CONDITION>

- [conditionTag] ::= <CONDITION type=�MaximumStepsStoppingCondition� maximum=�[integer]�/>
[conditionTag]

- [conditionTag] ::= <CONDITION type=�WordsDisappearStoppingCondition� words=�[wordList]�/>
[conditionTag]

- [conditionTag] ::= <CONDITION type=�ConsecutiveCon�gStoppingCondition�/> [condition-
Tag]

- [conditionTag] ::= <CONDITION type=�NonEmptyNodeStoppingCondition� nodeID=�[integer]�/>
[conditionTag]

- [conditionTag] ::= λ

The syntax of the stopping conditions shows that a NEP can have sev-
eral stopping conditions. The �rst one which is met causes the NEP to stop.
The di�erent types try to cover most of the stopping conditions used in the
literature. If needed, more of them can be added to the system.

At this moment jNEP supports 4 stopping conditions, the jNEP user guide

explains their semantics in detail:

1. ConsecutiveCon�gStoppingCondition: It stops the NEP if nothing
changes after two consecutive complete con�gurations (a communication
and an evolutionary step).

2. MaximumStepsStoppingCondition: The NEP stops after a maximum
number of steps.

3. WordsDisappearStoppingCondition: It stops the NEP if none of the
words speci�ed are in the NEP. It is useful for generative NEPs where the
lack of non-terminals means that the computation have reached its goal.

4. NonEmptyNodeStoppingCondition: The NEP stops if one of the
nodes is non-empty. Useful for NEPs with an output node.

- [nodeTag] ::= <NODE initCond="[wordList]" [auxWordList]> [evolutionaryRulesTag] [node-
FiltersTag] </NODE> [nodeTag]

- [nodeTag] ::= λ
- [auxWordList] ::= auxiliaryWords="[wordList]" | λ
- [evolutionaryRulesTag] ::= <EVOLUTIONARY_RULES> [ruleTag] </EVOLUTIONARY_RULES>
- [ruleTag] ::= < RULE ruleType=�[ruleType]� actionType= �[actionType]� symbol= �[symbol]�

newSymbol= �[symbol]� /> [ruleTag]
- [ruleTag] ::= < RULE ruleType= "splicing" wordX= �[symbolList]� wordY= �[symbolList]�

wordU= �[symbolList]� wordV= �[symbolList]�/> [ruleTag]
- [ruleTag] ::= < RULE ruleType= "splicingChoudhary" wordX= �[symbolList]� wordY= �[sym-

bolList]� wordU= �[symbolList]� wordV= �[symbolList]�/> [ruleTag]
- [ruleTag] ::= λ
- [ruleType] ::= insertion | deletion | substitution
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- [actionType] ::= LEFT | RIGHT | ANY
- [nodeFiltersTag] ::= [inputFilterTag] [outputFilterTag]
- [nodeFiltersTag] ::= [inputFilterTag]
- [nodeFiltersTag] ::= [outputFilterTag]
- [nodeFiltersTag] ::= λ
- [inputFilterTag] ::= <INPUT [�lterSpec]/>
- [outputFilterTag] ::= <OUTPUT [�lterSpec]/>
- [�lterSpec] ::= type=[�lterType] permittingContext=�[symbolList]�

forbiddingContext=�[symbolList]�
- [�lterSpec] ::= type=�SetMembershipFilter� wordSet=�[wordList]�
- [�lterSpec] ::= type=�RegularLangMembershipFilter� regularExpression=�[regExpression]�
- [�lterType] ::= 1 | 2 | 3 | 4

Above, we describe the elements of the processors: their initial conditions,
rules, and �lters. jNEP treats rules with the same philosophy as in the case
of stopping conditions, that is, our system supports almost all kinds found in
the literature at the moment and, more important, future types can also be
added.

jNEP can work with any of the rules found in the original model [6, 20, 7].
Moreover, we support splicing rules, which are needed to simulate an extension
of the original model presented in [8] and [12]. The two splicing rule types are
slightly di�erent. It is important to note that if you use Manea's splicing rules,
you may need to create an auxiliary word set for those processors with splicing
rules.

With respect to �lters, jNEP is prepared to simulate nodes with �lters
based on random context conditions. To be more speci�c, jNEP supports any
of the four �lter types traditionally used in the literature since [30]. Besides,
jNEP is capable of creating �lters based on membership conditions. They are
used in such studies as [6]. They are to some extent non-standard and could
be de�ned as follows:

1. SetMembershipFilter: It allows only words that are included in a spe-
ci�c set to pass.

2. RegularLangMembershipFilter: This �lter contains a regular lan-
guage to which words need to belong. The language has to be de�ned
as a Java regular expression.

We will �nish the explanation of the grammar for our xml �les with the
rules needed to describe some of the pending non-terminals. They are typical
constructs for lists of words, list of symbols, boolean and integer data and
regular expressions.

- [wordList] ::= [symbolList] [wordList]
- [wordList] ::= λ
- [symbolList] ::= a string of symbols separated by the character '_'
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- [boolean] ::= true | false
- [integer] ::= an integer number

- [regExpression] ::= a Java regular expression

The reader may refer to the jNEP user guide for further detailed informa-
tion.

jNEPview: a graphical viewer for the simulations of jNEP

jNEP has been improved with several visualization facilities. jNEPView dis-
play the network topology in a friendly manner and shows the complete de-
scription of the simulation state in each step. This tool makes it easier to
program and study NEPs, which are quite complex, facilitating theoretical
and practical advances on the NEP model.

In the following paragraphs we will describe the features of jNEP we have
used to implement this graphic viewer, we will also discuss the design of
jNEPView, and �nally we will show some examples.

jNEP logging system

jNEP produces a sequence of log �les while it is running, one for each sim-
ulation step. This sequence of �les will be read by jNEPView to show the
successive con�gurations of the NEP. These logs are in a very simple format
that contains a line for each processor in the same implicit order in which
they appear in the con�guration �le. Each line contains the strings of the cor-
responding processor. This little extension of jNEP makes it simple to follow
the trace of the simulation and manage it.

jNEPView design

To handle and visualize graphs, we have used JGraphT [2] and JGraph [4]
which are free Java libraries under the terms of the GNU Lesser General
Public License.

JGraphT provides mathematical graph-theory objects and algorithms. It
is used by jNEPView to formally represent the NEP underlying graph. Fortu-
nately, JGraphT can also display its graphs using the JGraph library, which
is graph visualization library with many utilities.

We use those libraries to show the NEP topology. Once jNEPView is
started, a window shows the NEP layout as clear as possible. We have decided
to set the nodes in a circle, but the user can freely move each component. In
this way, it is easier to interpret the NEP and study its dynamics.
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Moreover, several action buttons have been placed to study the NEP state
and progress. If the user clicks on a node, a window is open where the words
of the node appear. In order to control the simulation development, the user
can move throughout the simulation and the contents of the selected nodes
are updated in their corresponding windows in a synchronize way.

Before running jNEPView, jNEP should have actually �nished the sim-
ulation. In this way, jNEPView just reads the jNEP state logs and the user
can jump from one simulation step to another, without worrying about the
simulation execution times.

jNEPView example

This section describes how jNEPView shows the execution of a NEP solving
a particular case of the Hamiltonian path in an undirected graph. This NEP
is described in detail in [16] and in the chapter of this publication devoted to
some application of NEPs. The jNEP package, that you can freely download
from the web, includes the con�guration XML �le of this NEP.

Firstly, the user has to select the con�guration �le for jNEP which de�nes
the NEP to simulate. After that, the layout of the NEP is shown as in �gure
2.

At this point, the buttons placed in the main window to handle the sim-
ulation are activated and the user can select the nodes whose content is to
be inspected during the simulation. Besides, the program allows the user to
move throughout the simulation timeline by stepping forward and backward.
Figures 3 to 6 display the contents of all the nodes in the NEP at three di�er-
ent moments: the three �rst steps and the �nal one. The user can also jump
to a given simulation step by clicking on the appropriate button.

First steps of the simulation of NEPs on massively parallel

platforms

Introduction to parallel computing

Parallel computing is a form of computation in which many calculations are
carried out simultaneously (by means of multiple processing elements) to solve
a problem. The problem is broken up into independent parts (subdomains
or partitions) so that each processing element can execute its part of the
algorithm simultaneously with the others.

TRIANGLE 7 • March 2012



36 A. Ortega de la Puente et al.

Fig. 2. Window that shows the layout of the simulated NEP

Clusters of computers are a popular way of accessing to massively parallel
platforms. This is the case of the current work.

Perhaps the most popular general approach to parallel algorithms is the
master/slave type of organization. In these multiple-tier applications, a single
node (or more) organizes and disseminates the relatively separate tasks of
the overall composite problem, and (optionally) collects and/or reassembles
the individual results into a single integrated answer or product. The class of
nodes actually receiving and processing the smaller component tasks represent
another specialized tier of this hierarchical approach. More than two tiers
of organization are also possible. A single tier of �slaves�, all simultaneously
running serial code with absolutely no inter-communication, can be viewed
as a specialized form of this approach. But two levels of organization, often
with a single �master� node, is the most common con�guration. Strategies for
providing and optimizing load-balancing across multiple slave nodes within
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Fig. 3. Initial simulation step

Fig. 4. Next simulation step

heterogeneous parallel environments is of general signi�cance across a wide
array of problems.

Because communication and synchronization between the di�erent sub-
tasks and nodes are typically one of the greatest obstacles to good parallel
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Fig. 5. Second simulation step

Fig. 6. End of simulation

programm performance, parallel computer programs and algorithms are more
di�cult to implement than sequential ones. But good management of the
communications and synchronization is not su�cient in itself to achieve the
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best performance of the parallel algorithm; the loadbalancing and the domain
decomposition techniques also have a large role to play.

The most noteworthy idea of parallel computing is to decompose the prob-
lem into subproblems that are easier to solve; that is, the Divide and conquer

philosophy. But, it should be borne in mind that a better or worse perfor-
mance, and therefore the better use of resources, will depend on the solution
taken to decompose the problem into at least as many domains as processes
[25]; choosing an inappropriate domain decomposition will a�ect the speed-up
of the parallel solution but the domain decomposition depends on both the
problem that we want to execute in the cluster and its symmetries. Thus, our
goal is to develop a generic platform to execute existing sequential codes, so
that the parameters that optimize the application performance in the clus-
ter (such as network and data topologies or domain decomposition, etc.) will
be dynamically obtained while the algorithm is being executed. In general,
the domains decomposition algorithm must take into account the problem
properties and symmetries and must change them if the speed-up decreases.

Although we have used this framework to run NEPs in parallel, the frame-
work is not limited to this kind of application.

Methodology

In order to test the performance of clusters of computers when they are run in
parallel NEPs we have designed a family of graphs to solve several instances
of the Hamiltonian Path problem (HPP). [16] shows how the HPP can be
solved by means of NEPs with a lineal (temporal) performance. Although our
goal is not to reach this bound, this proof will give useful hints on how to
improve the performance of the simulation of NEPs on non parallel hardware
platforms.

2.1 Hamiltonian path problem solution by NEPs

This well-known NP-complete problem searches an undirected graph for a
Hamiltonian path, that is, one that visits each vertex exactly once.

This problem can be solved by means of the following NEP:

• The NEP graph is very similar to the one studied: an extra node is added
to ease the de�nition of the stopping condition.

• Let n be the number of nodes of the graph under consideration (see �gure
7).
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• Let {vi, 0 ≤ i ≤ n} be the set of processors of the NEP.
• The set {i, 0, 1, ..., n} is used as the alphabet. Symbol i is the initial content

of the initial node (v0). Each node (except the �nal one) adds its number
to the string received from the network.

• Input and output �lters are de�ned to allow the communication of all the
strings that have not yet visited the node.

• The input �lter of the �nal node excludes any string which is not a solution.
• It is easy to imagine a regular expression for the set of solutions (those

words with the proper length, the proper initial and �nal node and where
each node appears only once). The NEP basic model allows �lters to be
de�ned by means of regular expressions.

2.2 Family of graphs

Our goal is to check the cluster performance when solving the HPP for graphs
of increasing di�culty. We have used a family of graphs with n nodes. 0 is the
label of the initial node. Each node is connected with the four closest nodes.
That is, node i is connected with the set of nodes {i − 2, i − 1, i + 1, i + 2}
There is a special case. When de�ning the NEP to solve this instance, we
have to add the output node. The highest label is given to this node (n+ 1).
The output node is only connected with the �nal node of the graph under
consideration (n). The other connections of the output node are removed.

Fig. 7. Example of a NEP with n=6 and the extra one to collect the strings

Figure 7 shows this circumstance and the graph for n = 6.
These pages compare two approaches that our research group has used to

run NEPs on parallel platforms:
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1. A multithreaded simulator for desktop computers (possibly parallel)
2. A massively parallel architecture (clusters of computers)

2.3 Multithread platform architecture

As we have previously explained, jNEP is a multithreaded Java simulator for
NEPs. That is, it could actually be run in parallel if the underlying system is
able to distribute the threads among di�erent processors. We have performed a
set of experiments in a multicore desktop computer with these characteristics.

The standard Java Virtual Machine is not designed to be run on clusters
of computers. To run multithread Java applications on clusters a speci�c ex-
tension must be used. Most of these extensions migrate the threads on the
clusters by means of RMI (Remote Method Invocation). In this study we have
used JavaParty [3]. This is why it is di�cult to compare jNEP with other fre-
quently used libraries to handle parallel code on clusters. We just summarize
the results of jNEP and compare them with other implementations.

2.4 Parallel platform architecture

We can consider this platform to be a framework that works as both, master
and slave; it can also execute sequential code in a cluster, taking advantage of
the workload and dynamic domain decomposition concepts, without rewrit-
ing the code (NEPs in our case) to adapt it to this parallel platform. This
framework is implemented in ANSI C++, uses the MPI-II ([5]) extensions
and follows the master-slave model.

Any problem that will be solved on the cluster, can be modeled as a
weighted and directed graph Ga, denoted by Ga(T,D, ω); T denotes a set of
vertices of the graph that represents the tasks to be done; D represents a
�nite set of edges of the graph; each vertex has a computation weight ω that
represents the number of computations required by the task to accomplish
one step of the algorithm. The existence of an edge between vertex A and
vertex B means that, to calculate the value of A at a certain instant in the
execution, we need the value of B at the previous step of the algorithm. We
say that A has a data dependency on B.

The framework (see �gure 8) can be divided into 4 modules:

• Cluster controller: the module that handles the cluster and controls the
communication between the master process and the plugins speci�ed by
the users. These plugins con�gure the behaviour of the framework to adapt
it to the algorithm it will run on the cluster.
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• Master-side procedures: the master creates the data structures, balances
the workload ω among the di�erent nodes of the cluster (loadbalancing
policy), takes care of the domain decomposition (to break the problem
into independent domains) and reassembles the results sent by the slave
processes. Communication with the user is always through this process.

• Slave-side procedures: slaves execute the sequential algorithm over the re-
ceived domain as if they were not part of the cluster. Once the calculations
have been made, they send the results back to the master process.

• Communication layer: implemented as a layer over Message Passing Inter-
face (MPI), API speci�cation that allows processes to communicate with
another one or with any group of processes by sending and receiving mes-
sages.

Fig. 8. Framework architecture implemented to run sequential code as parallel in
a cluster of computers.

Both master and slave processes work with graph stuctures so, the master
translates the information given by the user into a graph and descomposes it
into several domains that are sent to the slaves. The slaves receive the domains
and translate them again into graphs. To transfer the information through the
net, both processes must be able to serialize and deserialize the information
of the graph, that is, binarize the user de�ned data structure that allocates
the data to each vertex of the graph.

The kernel method allows the user to execute its speci�c algorithm on the
slave process. Users do not have to worry about the communication and syn-
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chronization with the master process and they know neither how many slaves
have joined the simulation/resolution nor which loadbalancing and partition
algorithm is used.

The behaviour of the cluster (cluster con�guration and loadbalancing poli-
cies) and of the problem (problem con�guration and domain decomposition
method) are modelled by means of plugins. The system provides several plu-
gins that can be replaced by the users with their own code.

Results

We have performed two sets of experiments: on a conventional multicore ar-
chitecture and on a massively parallel platform.

For the �rst set of experiments we used a multithreaded multicore plat-
form (a desktop computer running a Linux kernel 2.6.26, with 16Gb of memory
and 4 ? 6 cores Intel(R) Xeon(R) CPU E7450 2.40GHz) running a Java mul-
tithreaded simulator for NEPs, developed by our research group. The jNEP
platform succeeded in solving graphs up to 8 nodes whereas the biggest graph
solved by our parallel framework had 24 nodes.

The results for the second set, were obtained by executing a sequential
NEP kernel in a parallel environment ([1] HLRB II, 9728 cores, 4Gb memory
per core) using the framework described. The simulation has been executed
with NEPs of di�erent numbers of nodes, from n = 16 (more or less 4x103

valid strings) to n = 24 (5x105 strings). From n = 28 and higher values, the
assigned resources reached the limit. To observe the framework behaviour the
number of slaves was changed, from 20 (equivalent to a single processor) to 24.
It is not possible to have 25 or more slaves, because this exceeds the number
of vertexes of the NEP. This is the reason for our limited testbench.

Time(s) Processes Mem.(Mb) Processes
n 2 3 5 9 17 n 2 3 5 9 17
NEP12 5 4 4 5 - NEP12 - - - - -
NEP16 6 6 5 4 6 NEP16 4 9.8 5.2 3.9 11
NEP20 17 14 13 9 9 NEP20 106-7 135.5 19.3 9.8 21.3
NEP24 103 90 83 79 74 NEP24 842.9 930.4 1445.5 200.1 153.6

Table 1. Execution time vs. number of processes and memory consumption vs.
number of processes.
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Fig. 9. a) Execution time running a sequential NEP algorithm in parallel using
the framework described. The performance of the application was better with the
NEP algorithm than with the single slave execution. b) Semilog plot for the memory
consumption running the NEP algorithm under the framework.

From the point of view of the execution time, the performance of the
algorithm is no worse when the framework (see table 1 and �g. 9). It can
also be observed that the execution time decreases until a certain value, that
depends on the number of processors and on the dimension of the problem, has
been reached. Once this point has been exceeded, if the number of processors
is still increasing, the execution time will start growing again, just because the
master spends more time on the management of the communication, processes
and domains than the slaves on the real calculus of the problem.

From the point of view of the memory consumption, behaviour is simi-
lar(see table 1); there is an optimal value of memory that depends on the
number of processes and on the number of nodes of the NEP. Once this point
has been reached, if the number of slaves is increased, the amount of memory
needed to solve the HPP will also increase. As long as more slaves join the
simulation, the number of domains will grow lineally and therefore, to ful�ll
the data dependencies between domains, the information will be more and
more replicated among the cluster (i.e more memory to allocate the network
bu�ers). On the other hand, increasing the number of domains involves in-
creasing of the number of frames sent by the slaves to the master process. In
summary, increasing the number of slaves leads to increasing the number of
dataframes and the size of each one.
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2.5 Programming languages for NEPs

NEPvl

Introduction to Domain Speci�c Visual Languages and AToM3

Visual Languages play a central role in many computer science activities. For
example, in software engineering, diagrams are widely used in most phases
of software construction. They provide intuitive and powerful domain-speci�c
constructs and make it possible to abstract from low-level, accidental details,
enabling reasoning and improving understandability and maintenance. The
term Domain Speci�c Visual Language (DSVL) [24] refers to languages that
are especially oriented to a certain domain, limited but extremely e�cient for
the task to be performed. DSVLs are extensively used in Model Driven Devel-
opment, one of the current approaches to Software Engineering. In this way,
engineers no longer have to resort to low-level languages and programming,
but are able to synthesize code for the �nal application from high-level, visual
models. This increases productivity, and quality, and means that it can be
used by non-programmers.

Designing a DSVL involves de�ning its concepts and the relations between
them. This is called the abstract syntax, and is usually de�ned through a meta-
model. Meta-models are normally described through UML class diagrams.
Hence, the language spawned by the meta-model is the (possibly in�nite)
set of models conformant to it. In addition, a DSVL needs to be provided
with a concrete syntax. That is, a visualization of the concepts de�ned in the
meta-model. In the simplest case, the concrete syntax just assigns icons to
meta-model classes and arrows to associations. The description of the abstract
and concrete syntax is enough to generate a graphical modelling environment
for the DSVL. Many tools are available that automate this task, and in this
chapter we describe AToM3 [15].

In many scenarios, the description of the DSVL syntax is not enough:
manipulations need to be de�ned that �breathe life� into such models. For
example, the models can be animated or simulated, �macros� de�ned for com-
plex editing commands, or code generators built for further processing by
other tools. As models and meta-models can be described as attributed, typed
graphs, they can be visually manipulated by means of graph transformation
techniques [18]. This is a declarative, visual and formal approach to manipu-
late graphs. Its formal basis, developed in the last 30 years, makes it possible
to demonstrate properties of the transformations. A graph grammar is made
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of a set of rules and a starting graph. Graph grammar rules consist of a left
and a right hand side (LHS and RHS), each with graphs. When a rule is
applied to a graph (called host graph), an occurrence of the LHS should be
found in the graph, and then it can be replaced by the RHS.

In this chapter, we describe our e�orts to apply the aforementioned con-
cepts to build a DSVL to design Networks of Evolving Processors (NEPs).
For this purpose, we built a meta-model in the AToM3 tool and a graphical
modelling environment was automatically generated. Then, this environment
was enriched by providing rules to automate complex editing commands, and
a code generator to synthesize code for jNEPs, in order to perform simula-
tions. The approach has the advantage that the �nal user does not need to be
pro�cient in the jNEP textual input language, but he can model and simulate
NEPs visually.

NEPs visual language

Designer's viewpoint: how to de�ne the metamodel for NEPs and, thus, the

visual language The system consists of four parts. Two of them are core com-
ponents and the rest can be considered as tools for increasing the usability of
the �nal system.

• Core components

� The meta-model, which provides the designer with the elements
needed to build models.

� The code generator, a program that automatically writes the code
used as input by the simulator.

• Tools that increase usability

� The constraints included in the meta-model that ensure the syntactic
(and possibly semantic) correctness of the models de�ned.

� Graph grammars. Some graph transformation rules can be speci-
�ed to automatically modify the models (which are actually AToM3

graphs) because several typical transformations might become dull and
time-consuming if done manually.

The �nal programmer just draws his NEP on a canvas of the main win-
dow by means of buttons and other typical GUI components. Some special
buttons trigger the checker and the code generator, they, �nally, they start
the execution of the simulator that uses the generated �le. The user gets the
result of the simulation without taking into account all the low level details
of the complete process.
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In the following paragraphs, the di�erent components of the system are
described with more detail.

Fig. 10 shows theUML class diagram of the meta-model that represents
the NEP domain for the simulator. We can see several classes for the usual el-
ements of a NEP: alphabet, processors, �lters, rules, and stopping conditions.
It also shows these subclasses:

Fig. 10. The meta-model UML class diagram

• Di�erent rules (found in the literature):
� inserting rules,
� deleting rules,
� substituting rules (replace a symbol),
� deriving rules (change a symbol by a string),
� rules that match regular expressions (splicing rules)

• Di�erent stopping conditions (the name used in the diagram is highlighted)
� consecutive_con�g, the system stops when no change is detected;
� maximum_steps, it stops after a given number of steps;
� words_disappear, when some speci�c words disappear;
� non_empty_node, when something enters a speci�c node by the �rst

time .
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The code generator is a set of Python routines responsible for creating
the XML �le that will be the input for the simulator (jNEP in this case). The
algorithm of the code generator follows two steps:

• Correctness test. The code generator checks the following properties: there
must be exactly one alphabet and one stopping condition; all the symbols
in the model have to be contained in the alphabet, and there is a maximum
of zero or one connection between each pair of processors.

• Code generation. The NEP being programmed is internally represented
as a graph between instances of the classes de�ned in the metamodel.
The edges of this graph follow the relationship of the metamodel. After
checking the correctness of the model, and only if there is no mistake,
the code generator goes across the graph of the model translating each
instance and each relation into the corresponding XML code.

Graph grammars We have identi�ed two speci�c tasks that could be-
come boring and time-consuming if a NEP is designed manually. We have
decided to automatically implement these tasks by means of graph grammars:

• To create the input and ouput �lters of each processor.
• To create a complete graph among the processors.

In both cases, the �nal programmer will only push the button associated with
the corresponding action.

In AToM3, each component in the UML diagram of the metamodel is
enriched with the graphical representation by means of which the �nal pro-
grammer will draw this component on the canvas of the �nal system. These
graphical representations actually describe the (graphic) basic syntax of the
visual language. We have used for NEPvl the following representations for the
main components:

• Big rectangles, for alphabets.
• Small rectangles, for stopping conditions.
• Triangles, for �lters.
• Ovals, for rules.
• Those attributes whose values are strings of characters are represented by

means of texts.

Figure 11 shows some examples of these graphical representations by
means of part of a NEP that contains the alphabet and two processors with
their �lters; each processor has a rule (P1 has a deleting rule and P2 has an
inserting one) and they form a complete graph.

TRIANGLE 7 • March 2012



Developing Tools for NEPs 49

Fig. 11. Example of graphic representation of a NEP

Programmer's viewpoint: how to graphically design NEPs It is very simple to
design models graphically, because the programmer only has to use di�erent
GUI elements (buttons, combo-boxes, pop-up menus, etc.) to draw the NEP
on the canvas of the main window of the system.

Figure 11 also shows the main buttons of NEPvl. They are in the left
margin of the window

NEPsLingua

In this chapter we introduce NEPs-Lingua, the �rst textual programming
language for NEPs. It is a �rst step to extend the P-Lingua approach to
other bio-inspired models of computation. Our goal is to provide researchers
with homogeneous family of languages for programming natural computers.
Programmers who are familiar with a model will not have to learn a very
di�erent syntax if they try to use other models. This is why NEPs-Lingua is
designed to be similar to P-Lingua. NEps-Lingua has two main goals that will
also be described in detail below:

1. Like P-Lingua, it aims to provide researchers with a syntax as close as
possible to the one used to describe NEPs in the literature.
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2. It tries to ease some usually boring, mechanical and time-consuming tasks
needed to describe NEPs with the input formalisms of the available tools.

The NEPs-Lingua syntax

In the following paragraphs we describe, mainly by examples, the syntax of
NEPs-Lingua. A full ANTLR 3 description of the complete grammar may
be ordered from the authors. The main components of a NEPs-Lingua pro-
gram are atomic data, comments, nodes, the alphabet, the initial contents of
the nodes, evolutionary rules, �lters, the connections of the NEP graph and
stopping conditions.

Atoms There are two classes of atomic data: alphanumeric strings of symbols
(they have to start with an alphabetic character); and integer arithmetic ex-
pressions, with the usual mathematical notation, which include the operators
in the set {∧(power),+,−, ∗, /}

Comments The typical C++ comments are also available in NEPs-Lingua.

• Line comments For example // Comment.
The comment includes every symbol until the end of the line.

• Multi line comments For example

/* ... Comment

... */

Where the comment includes everything (even the end of line markers)
between the symbols �/*� and �*/�.

Alphabet It is the alphabet of the NEP, a set of strings of symbols. The ex-
pression @A={X,S,a,b,o,O} de�nes an alphabet that contains the elements
�X�, �S�, �a�, �b�, �O�, and �o�.

Nodes This is the most complex type of NEPs-Lingua data. There are two
classes of nodes: with and without indexes. There are two kinds of indexes:
numeric (de�ned by a range) and symbolic (de�ned by a set of strings of
symbols). The syntax of indexes with numeric ranges is borrowed from P-
Lingua.

3 ANTLR is a Java tool for designing top-down parsers and language pro-
cessors, developed by Terence Par. Further information can be found at
http://www.antlr.org/
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• Non indexed nodes The expression {initial, final} de�nes two nodes
without indexes with the names initial and �nal.

• Indexed nodes The example de�nes a family of nodes with two indexes.
One of them (i) takes its values from the interval [0, 10]. The values of the
other (j) are taken from the set {o, a, b}.

{m{i,j}: 0<=i<=10, j->{o,a,b}}

The explicit set of the 33 de�ned nodes is {m0,a,m0,b,m0,c, . . .m10,a,m10,b,m10,c}.

Di�erent kinds of nodes can be mixed by means of the union operator. The
next example de�nes a set of nodes that contains the two previous examples.

@N={initial, final}+{m{i,j}: 0<=i<=10, j->{o,a,b}}

Initial content It describes the set of strings that a given node initially con-
tains. Notice that the node is written as a parameter of the content directive
@c. The expression @c{n{X}} = {X, S} sets the initial content of the node
nX to {X,S}

Rules Each type of rule has a di�erent notation. Notice that, as in P-Lingua,
the symbol # stands for the empty string and the string --> separates the left
and right sides of the rule. The sentences # -->a, a --># and S-->aSb are
examples of insertion, deletion, and substitution (or deriving) rules, respec-
tively.

All the rules for a given node are given together in the same sentence. The
sentence @r{n{S}} = {S-->aSb, S-->ab} assigns two deriving rules to the
node nS .

Filters Each processor needs an input and an output �lter. Several papers
mentioned above de�ne three components in the �lters: their type and the
permitting and forbidding contexts. We have grouped the di�erent �lters of
the literature into six types (depending on how they are applied): types from
1 to 4 and �lters de�ned by means of regular expressions or by means of
sets of strings. Both contexts are just sets of symbols described by means
of regular patterns or explicit sets of strings. The following examples de�ne
several �lters:

@pif{n{S}}={1, {abc, oo}}

@fof{initial}={@regular_pattern, (((a[]b)+) ][ (c*) )][ # }

@pif{n{2,a}}={@set, {a,ab,aabb}}
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where @pif and @fof stand, respectively, for permitting input and forbidding
ouput �lter (the same notation is used for forbidding input and permitting
output �lters). In regular expressions [], ][, +, *, # represent intersec-
tion, union, + and *, and the empty string, respectively.

Connections This element makes it possible to get a compact representation
of NEPs. There are two ways of de�ning connections: the directive @complete,
which stands for a complete graph; and an explicit set of connections de�ned
by means of pairs of nodes. The following examples show both options:

@C=@complete

@C={ (final,n{X}), (n{X},m{9,a}) }

Stopping conditions The stopping conditions are written in a set after the
directive @S. Each kind of condition is represented by its name and its required
parameters. Both names and parameters are easy to identify in the following
example:

@S={@no_change, @max_steps = 3+4,

@non_emtpy_node={n{O}, n{X}} }

where @no_change stands for two consecutive equal con�gurations;
@max_steps requires an expression to de�ne the number of steps (the NEP
stops after taking the given number of steps); and @non_empty_node includes
a set of nodes whose contents are initially empty (the NEP stops when one of
these nodes receives some string).

Examples

In this section we will show some complete NEPs-Lingua programs. Our main
goal is to highlight the two main characteristics of NEPs-Lingua: reducing
the size and keeping close to the formal notation. For this purpose we will
compare several NEPs-Lingua programs with NEPs examples taken from the
literature. For reasons of space, we refer to the original papers for the detailed
de�nition of the examples.

Reducing the size of the representations We shall �rst consider a very simple
NEP. It has two nodes that delete and insert the symbol B. The initial word
AB travels from one node to the other. The �rst node removes the symbol B
from the string before leaving it in the net. The other node receives string A
and adds symbol B again. The resulting string comes back to the initial node
and the same process takes place again.

The XML �le for jNEP is shown below:
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<NEP nodes="2">

<ALPHABET symbols="A_B"/>

<GRAPH> <EDGE vertex1="0" vertex2="1"/> </GRAPH>

<EVOLUTIONARY_PROCESSORS>

<NODE initCond="A_B">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT"

symbol="B"

newSymbol=""/></EVOLUTIONARY_RULES>

<FILTERS> <INPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

<OUTPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

</FILTERS>

</NODE>

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="insertion" actionType="RIGHT"

symbol="B"

newSymbol=""/> </EVOLUTIONARY_RULES>

<FILTERS> <INPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

<OUTPUT type="2"

permittingContext="A_B"

forbiddingContext=""/>

</FILTERS>

</NODE>

</EVOLUTIONARY_PROCESSORS>

<STOPPING_CONDITION>

<CONDITION type="MaximumStepsStoppingCondition"

maximum="8"/>

</STOPPING_CONDITION>

</NEP>

(XML con�guration �le for a simple NEP with just two processors that send the
words A and B back and forth)
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It is easy to see that the NEPVl program shown in �gure 11 corresponds
to this same NEP.

We will show below the NEPs-Lingua program for the previous example.
With this simple case we can see that the NEPs-Lingua program is more
compact than the other two representations described.

@A={A,B}

@N={ n{i}: 0 <= i <= 1}

@c{n{0}}={A,B}

@r{n{0}}={B-->#}

@r{n{1}}={#-->B}

@S={@max_steps = 8 }

@C={@complete}

The reduction in size increases as the complexity of the NEP increases.
NEPs usually have complete graphs.

Fig. 12. jNEPview window showing the complete graph of a NEP with 9 processors.
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Figure 12 shows the jNEPview window for a NEP with a complete graph
with 9 nodes.

The XML con�guration �le for this NEP is forced to explicitly contain all
the nodes and connections while the NEPs-Lingua source has to contain just
the following two sentences:

@N={ n{i}: 0 <= i <= 8}

@C=@complete

[6] shows a NEP that can solve a small instance of the well known graph
coloring problem with three di�erent colours. It needs a complete graph with
many more nodes than in the previous example.

The jNEPview window for this NEP is not shown here because it is di�cult
to handle: it looks like a ball of yarn. Once again the NEPs-Lingua program
needs just the following two sentences:

@N={ n{i}: 0 <= i <= 50 } // Definition of 51 nodes

@C=@complete

Keeping NEPs-Lingua as close as possible to the formal notation used in the

literature. The interested reader can easily see in the references for the last
two examples (3-SAT and 3 coloring) that NEPs-Lingua syntax is mainly
inspired by the formal notation used in the literature to describe NEPs.

[23] contains another example: a NEP associated with the context free
grammar for axiom X with the derivation rules {X → SO, S → aSb, S →
ab,O → o,O → oO,O → Oo}

It is easy to see that the following NEPs-Lingua program for this NEP is
quite similar to its formal de�nition.

@A={X,S,a,b,o,O} // Alphabet

@N= {final}+ {n{symbol}:symbol->{X,S,O}} /* Nodes associated

with non terminal symbols */

@c{n{X}}={X} // Initial content of the axiom node

@r{n{X}}= {X-->SO} // Deriving rules for the axiom

@r{n{S}}= {S-->aSb, S-->ab}

@r{n{O}}= {O-->o, O-->oO, O-->Oo}

@C=@complete // The graph is complete

@S={ @non_emtpy_node={final} } // Stopping conditions
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NEPs Lingua semantics

The semantic constraints that every NEPs-Lingua program has to satisfy are
outlined below:

• It has to contain exactly one alphabet and one set of node declarations.
• It needs at most one of the following elements:

� Connection declaration set. By default, the graph is considered com-
plete.

� Set of stopping conditions. @no_change is assumed by default.
• Filters, rules and initial contents are optional.
• Nodes have to be de�ned before they are used.
• Each symbol representing rules, �lters and initial contents has to be in-

cluded in the alphabet.

NEPs-Lingua compilers should ensure these conditions. The last one is
usually controlled by means of a symbol table that is �lled while processing
the declaration sentences and is consulted by the sentences that use nodes
and symbols.

We have used di�erent Hashtable Java objects to check these constraints.
The following example shows some semantic mistakes:

@A={A}

@N={ n{i}: 0 <= j <= 1}

@c{n{0}}={A,B}

@r{n{0}}={B-->#}

@r{n{2}}={#-->B}

@S={@max_steps = 8 }

@C={@complete}

• The third, fourth and �fth lines contain the symbol B, which is not in the
alphabet.

• The second line de�nes the index j, while the declared one is i
• The �fth line de�nes the rules for node n2, but the value for index (2) is

invalid
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1 Solving NP-problems with Lineally Bounded
Resources

In the following pages we will use NEPS to solve several small instances of
well known NP problems. We will show computational implementations of
NEPs.

In previous sections we have shown some results that prove the computa-
tional power of NEPs and the possibility of lineally bounding the temporal
performance of their algorithms to solve NP problems. Their excellent per-
formance depends on the following facts: NEPs are inherently parallel, and it
is assumed that each of their processors has the spatial resources needed to
store the results of applying all the possible rules to its contents. All these
results are assumed to be generated at the same time.

NEPs have not been implemented in real hardware. So, in practice, NEPs
have to be simulated on the architecture of one of the available computers.
In practice it is very di�cult to achieve lineal termporal performance because
all these platforms need to explicitly handle all the possible results of all the
processors. If all of them are simultaneously stored to be processed in paral-
lel, the likely exponential temporal complexity turns into exponential spatial
complexity. Nevertheless, it seems possible that the overall performance can
be improved if we choose the proper platform. It is a trade-o� between spatial
and temporal needs.

Elsewere in this volume, we have described di�erent approaches to the
simulation of NEPs in di�erent platforms (including their e�cient access to
clusters of computers).

In this chapter we will not take into account the �nal platform but only
will show how NP-problems can be computationally solved with NEPs and
be simulated with jNEP. It is clear that we can improve the likely exponen-
tial temporal performance if we choose the proper �nal platform to run our
programs.

1.1 Solving the SAT problem with jNEP

Reference [12] describes a NEP with splicing rules (ANSP) which solves the
boolean satis�ability problem (SAT) with linear resources, in terms of the
complexity classes also present in [12].

We have previously explained in this same volume that ANSP stands for
Accepting Networks of Splicing Processors. In short, an ANSP is a NEP in
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which the transformation rules of its nodes are splicing rules. The transfor-
mation performed by those rules is very similar to the genetic crossover.
To be more precise, a splicing rule σ is a quadruple of words written as
σ = [(x, y); (u, v)]. Given this splicing rule σ and two words (w,z), the action
of σ on (w,z) is de�ned as follows:

σ(w, z) = {t | w = αxyβ, z = γuvδ for any words α, β, γ, δ and t = αxvδ or
t = γuyβ}

We can use jNEP to actually build and run the ANSP that solves the
boolean satis�ability problem (SAT). We will see how the features of NEPs
and the splicing rules can be used to tackle this problem. The following is a
broad summary of the con�guration �le for such an ANSP, applied to the solu-
tion of the SAT problem for three variables. The entire �le can be downloaded
from jnep.e-delrosal.net.

<NEP nodes="9">

<ALPHABET symbols="A_B_C_!A_!B_!C_AND_OR_(_)_[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_

UP_{_}_1"/>

<!-- WE IGNORE THE GRAPH TAG TO SAVE SPACE. THIS NEP HAVE A COMPLETE GRAPH -->

<STOPPING_CONDITION>

<CONDITION type="NonEmptyNodeStoppingCondition" nodeID="1"/>

</STOPPING_CONDITION>

<EVOLUTIONARY_PROCESSORS>

<!-- INPUT NODE -->

<NODE initCond="{_(_A_)_AND_(_B_OR_C_)_}"

auxiliaryWords="{_[A=1]_# {_[A=0]_# {_[B=1]_# {_[B=0]_# {_[C=1]_# {_[C=0]_#">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=0]" wordU="{_[B=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=0]" wordU="{_[B=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=1]" wordU="{_[B=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[A=1]" wordU="{_[B=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=0]" wordU="{_[C=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=0]" wordU="{_[C=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=1]" wordU="{_[C=0]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="[B=1]" wordU="{_[C=1]" wordV="#"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="4"

permittingContext=""

forbiddingContext="[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_UP_{_}_1"/>

<OUTPUT type="4" permittingContext="[C=1]_[C=0]" forbiddingContext=""/>

</FILTERS>

</NODE>

<!-- OUTPUT NODE -->

<NODE initCond="">

<EVOLUTIONARY_RULES>

</EVOLUTIONARY_RULES>

<FILTERS>
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<INPUT type="1" permittingContext=""

forbiddingContext="A_B_C_!A_!B_!C_AND_OR_(_)"/>

<OUTPUT type="1" permittingContext=""

forbiddingContext="[A=1]_[B=1]_[C=1]_[A=0]_[B=0]_[C=0]_#_UP_{_}_1"/>

</FILTERS>

</NODE>

<!-- COMP NODE -->

<NODE initCond="" auxiliaryWords="#_[A=0]_} #_[A=1]_} #_} #_1_)_}">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="A_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!A_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="B_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!B_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="C_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="!C_OR_1_)_}" wordU="#"

wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="AND_(_1_)_}" wordU="#"

wordV="}"/>

<RULE ruleType="splicing" wordX="" wordY="[A=1]_(_1_)_}" wordU="#"

wordV="[A=1]_}"/>

<RULE ruleType="splicing" wordX="" wordY="[A=0]_(_1_)_}" wordU="#"

wordV="[A=0]_}"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="1" forbiddingContext=""/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_1"/>

</FILTERS>

</NODE>

<!-- A=1 NODE -->

<NODE initCond="" auxiliaryWords="#_1_)_} #_)_}">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="A_)_}" wordU="#" wordV="1_)_}"/>

<RULE ruleType="splicing" wordX="" wordY="(_!A_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="OR_!A_)_}" wordU="#" wordV=")_}"/>

<RULE ruleType="splicing" wordX="" wordY="B_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="C_)_}" wordU="#" wordV="UP"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="[A=1]" forbiddingContext="[A=0]_1"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_UP"/>

</FILTERS>

</NODE>

<!-- A=0 NODE -->

<NODE initCond="" auxiliaryWords="#_1_)_} #_)_}">

<EVOLUTIONARY_RULES>

<RULE ruleType="splicing" wordX="" wordY="OR_A_)_}" wordU="#" wordV=")_}"/>

<RULE ruleType="splicing" wordX="" wordY="(_A_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="!A_)_}" wordU="#" wordV="1"/>

<RULE ruleType="splicing" wordX="" wordY="B_)_}" wordU="#" wordV="UP"/>

<RULE ruleType="splicing" wordX="" wordY="C_)_}" wordU="#" wordV="UP"/>

</EVOLUTIONARY_RULES>

<FILTERS>
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<INPUT type="1" permittingContext="[A=0]" forbiddingContext="[A=1]_1"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="#_UP"/>

</FILTERS>

</NODE>

<!-- NODES FOR 'B' AND 'C' ARE ANALOGOUS TO THOSE FOR 'A'. WE DO NOT PRESENT

THEM TO SAVE SPACE-->

</EVOLUTIONARY_PROCESSORS>

</NEP>

With this con�guration �le, at the end of its computation, jNEP outputs
the interpretation which satis�es the logical formula contained in the �le;
namely

(_A_)_AND_(_B_OR_C_): {_[C=0]_[B=1]_[A=1]_} {_[C=1]_[B=1]_[A=1]_} {_[C=1]_[B=0]_[A=1]_}

This ANSP can solve any formula with three variables. The formula to be
solved must be speci�ed as the value of the initCond attribute for the input
node.

*************** NEP INITIAL CONFIGURATION ***************

--- Evolutionary Processor 0 ---

{_(_A_)_AND_(_B_OR_C_)_}

Our ANSP works as follows. Firstly, the �rst node creates all the possible
combinations for the values of the 3 variables. We show below the jNEP output
for the �rst step:

*************** NEP CONFIGURATION - EVOLUTIONARY STEP -**

****************** TOTAL STEPS: 1 ***********************

--- Evolutionary Processor 0 ---

{_# {_[A=1]_(_A_)_AND_(_B_OR_C_)_} {_[A=0]_(_A_)_AND_(_B_OR_C_)_}

As shown, the splicing rules of the initial node have appended the two
possible values of A to two copies of the logical formula. The rules concerned
are:

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=1]" wordV="#"/>

<RULE ruleType="splicing" wordX="{" wordY="(" wordU="{_[A=0]" wordV="#"/>

This kind of rules (Manea's splicing rules) uses some auxiliary words that
are never removed from the nodes. In our ANSP we use the following auxiliary
words:

auxiliaryWords="{_[A=1]_# {_[A=0]_# {_[B=1]_# {_[B=0]_# {_[C=1]_# {_[C=0]_#"

The end of this �rst stage arises after 2n− 1 steps, where n is the number
of variables:

--- Evolutionary Processor 0 ---

{_#

{_[C=0]_[B=0]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=0]_[B=0]_[A=1]_(_A_)_AND_(_B_OR_C_)_}

TRIANGLE 7 • March 2012



68 A. Ortega de la Puente et al.

{_[C=1]_[B=0]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=1]_[B=0]_[A=1]_(_A_)_AND_(_B_OR_C_)_}

{_[C=0]_[B=1]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=0]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_}

{_[C=1]_[B=1]_[A=0]_(_A_)_AND_(_B_OR_C_)_} {_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_}

We should point out that NEPs take advantage of the fact that all the rules
can be applied to one word in the same step. This is because the model states
that each word has an arbitrary number of copies in its processor. Therefore,
the above task (which is Θ(2n)) can be completed in n steps, since each step
double the number of words by including in each word a new variable with
the value 1 or 0.

After this �rst stage, the words can leave the initial node and travel to
the other nodes. In the net, there is one node per variable and value; in
other words, there is one node for A = 1, another for C = 0 and so on.
Each of these nodes reduces, from right to left, the word representing the
formula according to the variable values. For example, the sixth node is re-
sponsible for C = 1 and, thus, makes the following modi�cation to the word
{_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_}:

{_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_} =⇒

{_[C=1]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_1_)_}

However, the ninth node is responsible for C = 0 and, therefore, produces
the following change:

{_[C=0]_[B=1]_[A=1]_(_A_)_AND_(_B_OR_C_)_} =⇒

{_[C=0]_[B=1]_[A=1]_(_A_)_AND_(_B_)_}

In this way, the nodes share the results of their modi�cations until one
of them produces a word in which the formula is empty and only contains
the left side with the variable values. This kind of words is allowed to pass
through the input �lter of the output node and will therefore enter it At this
point the NEP halts, since the stopping condition of the NEP states that a
non-empty output node is the signal to stop the computation.

For further details, plase refer to [12] and the implementation in jnep.e-
delrosal.net.
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1.2 Solving an instance of the Hamiltonian path problem with

jNEP

Hamiltonian path problem

This well-known NP-complete problem searches an undirected graph for a
Hamiltonian path; that is, one that visits each vertex exactly once.

In [1], Adleman proposed to solve this problem with polynomial resources
by means of DNA manipulations in the laboratory. Figure 1 shows the graph
he used. In this case, the solution is obvious (path 0-1-2-3-4-5-6) Despite its
simplicity, Adleman described a general algorithm applicable to almost any
graph with the same performance.

Fig. 1. Graph studied by Adleman

Adleman's algorithm can be summarized as follows:

1. Randomly generate all the possible paths.
2. Select those paths that begin and end in the proper nodes.
3. Select only the paths that contain exactly the total number of nodes.
4. Remove those paths that contain some node more than once.
5. The remaining paths are solutions to the problem.

The present study follows a similar approach (we have already introduced
it in this same volume). Remember that the NEP graph is very similar to
the one studied above: an extra node is added to ease the de�nition of the
stopping condition. The set i,0,1,2,3,4,5,6 is used as the alphabet. Symbol i
is the initial content of the initial node (v0) Each node (except the �nal one)
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adds its number to the string received from the network. Input and output
�lters are de�ned to allow the communication of all the possible words without
any special constraint. The input �lter of the �nal node excludes any string
which is not a solution. It is easy to imagine a regular expression for the
set of solutions (those words with the proper length, the proper initial and
�nal node and where each node appears only once). The NEP basic model
de�nes �lters by means of regular expressions. It is also easy to devise a
set of additional nodes that performs the previous �lter following Adleman's
checks (proper beginning and end, proper length, and number of occurrences
of each node). For the sake of simplicity we have explicitly used the solution
word (i_0_1_2_3_4_5_6) instead of a more complex regular expression or
a greater NEP.

The reader will �nd at http://jnep.e-delrosal.net the complete XML �le
for this problem (Adleman.xml).

The XML �le for this example de�nes the alphabet with this tag

<ALPHABET symbols="i_0_1_2_3_4_5_6" />

and the initial content of node 0 as

<NODE initCond="i">

The rules for adding the number of the node to its string are de�ned as
follows (here for node 2)

<RULE ruleType = "insertion" actionType = "RIGHT" symbol = "2"/>

There are several ways of de�ning �lters for the desired behavior (to allow
the communication of all the possible words without any special constraint).
We have used only the permitted input and output �lters. A string can enter
a node if it contains any of the symbols of the alphabet and no string is
forbidden.

<FILTERS>

<INPUT type="2"

permittingContext="i_0_1_2_3_4_5_6"

forbiddingContext="" />

<OUTPUT type="2"

permittingContext="i_0_1_2_3_4_5_6"

forbiddingContext="" />

</FILTERS>

The behavior of the NEP is sketched as follows:

1. In the initial step the only non empty node is 0 and contains the string i
2. After the �rst step, 0 is added to this string and, node 0 therefore contains

i_0
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3. This string is moved to the nodes connected to node 0. In the next steps
only nodes 1, 3 and 6 contain i_0.

4. These nodes add their number to the received string. In the next step
their contents are, respectively, i_0_1, i_0_3 and i_0_6

5. This process is repeated as many times as necessary to produce a string
that meets the conditions of the solution. In this �nal step the solution
string i_0_1_2_3_4_5_6 is sent to node 7 and the NEP stops.

De�ning �lters in the NEP model poses some di�culties to the design
of NEPs and, thus, to the development of a simulator. These �lters are de-
�ned [7] [6] by means of two paris of �lters (forbidden and allowed) to each
operation (input and output). There are also several ways of combining and
applying the �lters to translate them into a set of strings. This mechanism
contains obvious redundancies that make it di�cult to design NEPs. It could
be advisable a more general agreement of the researchers to ease and simplify
the development of NEPs simulators.

1.3 Solving a graph coloring problem with jNEP

This problem describes a map whose regions have to be colored with only
three colors. Adjacent regions must be colored in di�erent colors. We have
used the NEP de�ned in [6]. The map is translated into an undirected graph
whose nodes stand for the regions and whose edges represent the adjacency
relationship between regions. Figure 2 shows one of the examples we have
studied. It is straightforward to prove that there is no solution to this map.

Fig. 2. Example of a map and its adjacency graph. In this case, there is no solution
for the 3-colorability problem
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The NEP has a complete graph with two special nodes (for the initial and
�nal steps) and a set of seven nodes associated to each edge of the adjacency
graph. These nodes perform the tasks outlined below.

The initial (�nal) node is responsible for starting (stopping) the computa-
tion. The seven nodes associated with an edge of the map are grouped in three
pairs (one for each color). There is, in addition, a special node to communicate
with the set of nodes of the next edge. Each pair is responsible for the main
operation in the NEP: to check that a coloring constraint is not violated for
the current edge. It performs this task in the following way:

Let us suppose that the color red is the one associated with the pair of
nodes. The �rst node in the NEP associates the color red to the �rst node
of the edge in the map. The second node in the NEP simultaneously keeps
all the allowed coloring (two, in this case) for the second node of the edge:
(blue and green) It is clear that the only acceptable colorings for this edge are
red-blue and red-green.

The behavior of the complete NEP could be described as follows:

1. The initial node generates all the possible assignments of colors to all the
regions in the map and adds a symbol to identify the �rst edge to be
checked. These strings are communicated to all the nodes of the graph.

2. The set of nodes associated to each edge accepts only the strings marked
with the symbol of the edge. These nodes remove all the strings that
violate the coloring constraint for the regions of the edge. One special
node in the set replaces the edge mark with that which corresponds to
the next edge. In this way, the process continues.

3. The �nal node of the NEP collects the strings that satisfy the constraints
of all the edges. It is straightforward to see that these strings are the
solutions.

Some fragments of the XML �le for this example (3Coloring.xml) are
shown below to describe the above behavior in greater detail:

The alphabet of the NEP is de�ned as follows:

<ALPHABET

symbols="b1_r1_g1_b2_r2_g2_b3_r3_g3_b4_r4_g4_b5_r5_g5_B1_R1_G1_B2_R2_G2_B3_R3_G3

_B4_R4_G4_B5_R5_G5_a1_a2_a3_a4_a5_X1_X2_X3_X4_X5_X6_X8_X9"/>

This alphabet contains the following subsets of symbols: a1,...,a5 repre-
sents the initial situation of the regions (uncolored). b1, r1, g1,..., b5, r5, g5
represents the assignment of the colors to the regions. B1, R1, G1,..., B5,
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R5, G5 is a copy of the previous set to be used while checking the constraint
associated with a pair of adjacent regions.

The string contained in the initial node at the beginning represents the
complete uncolored map and the number of the �rst edge to be tackled (X1)

<NODE initCond="a1_a2_a3_a4_a5_X1">

The rules of the initial node assign all the possible colors to all the regions.
The following rules refer to the second region:

<RULE ruleType = "substitution"

actionType = "ANY"

symbol="a2" newSymbol="b2"/>

<RULE ruleType="substitution"

actionType="ANY"

symbol="a2" newSymbol="r2"/>

<RULE ruleType="substitution"

actionType="ANY"

symbol="a2" newSymbol="g2"/>

The node in the NEP that assigns a color (Red, in this case) to the �rst
region (1 in the example) of an edge in the map uses the following rule:

<RULE ruleType="substitution"

actionType="ANY" symbol="r1"

newSymbol="R1"/>

The other node ensures that the adjacent region (2 in this case) has a
di�erent color by means of these rules:

<RULE ruleType="substitution"

actionType="ANY"

symbol="b2"

newSymbol="B2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="g2"

newSymbol="G2"/>

The node used for starting the process in the next edge removes any special
(capitalized) color symbol and sets the edge marking to the next one. The
following rules correspond to the �rst edge

<RULE ruleType="substitution"

actionType="ANY" symbol="R1"

newSymbol="r1"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="B1"

newSymbol="b1"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="G1"

newSymbol="g1"/>

<RULE ruleType="substitution"
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actionType="ANY" symbol="R2"

newSymbol="r2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="B2"

newSymbol="b2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="G2"

newSymbol="g2"/>

<RULE ruleType="substitution"

actionType="ANY" symbol="X1"

newSymbol="X2"/>

We found it di�cult to apply the input and output �lters as they are
in [6]. In our opinion, greater standardization is advisable to minimize these
situations. Notice that nodes associated with the last edge (in this case with
number 8) mark their strings with the following number, which does not cor-
respond to any edge in the graph (9 in our example). This is important for
the design of the �nal node that checks the stopping condition (Non Empty
Node Stopping Condition). This �nal node only accepts strings with the cor-
responding mark (one that does not correspond to any edge in the adjacency
graph).

Figure 3 shows another map to be colored with 3 colors. It is generated
by splitting region 3 and 4 in �gure 2. Figure 3 also summarizes the sequence
of steps for one of the possible solutions. It is worth noticing that all the
solutions are simultaneously kept in the con�gurations of the NEP.

The behavior of the NEP for this map could be summarized as follows:
the initial content of the initial node is a1_a2_a3_a4_a5_X1. This node
produces all the possible coloring combinations. In the second step of the
computation, for example, it contains the following strings:

b1_a2_a3_a4_a5_X1 r1_a2_a3_a4_a5_X1
g1_a2_a3_a4_a5_X1 a1_b2_a3_a4_a5_X1
a1_r2_a3_a4_a5_X1 a1_g2_a3_a4_a5_X1
a1_a2_b3_a4_a5_X1 a1_a2_r3_a4_a5_X1
a1_a2_g3_a4_a5_X1 a1_a2_a3_b4_a5_X1
a1_a2_a3_r4_a5_X1 a1_a2_a3_g4_a5_X1
a1_a2_a3_a4_b5_X1 a1_a2_a3_a4_r5_X1
a1_a2_a3_a4_g5_X1

The NEP still needs a few more steps to get all the combinations. Then,
the coloring constraints are applied simultaneously to all the possible solutions
and those assignments that violate some constraint are removed. We describe
below a sequence of strings generated by the NEP that corresponds to the
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Fig. 3. Sequence of steps in the solution of a 3-coloring problem by jNEP

solution graphically shown in �gure 2: r1_g2_b3_b4_r5_X1 is generated
in the initial steps. After checking the 1st edge (regions 1 and 2) the NEP
contains two strings: R1_g2_b3_b4_r5_X1 and R1_G2_b3_b4_r5_X1

After checking the 2nd edge (regions 1 and 3) R1_g2_B3_b4_r5_X2.
And after checking edges 3, 4, 5, 6 and 8 (remember that edge 7 was removed
to make the map colorable) associated, respectively, with the pairs of regions
1-4, 2-3, 2-4, 2-5 and 4-5, the following strings are in the NEP:

R1_g2_b3_B4_r5_X3 r1_G2_B3_b4_r5_X4
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r1_G2_b3_B4_r5_X5 r1_G2_b3_b4_R5_X6
r1_g2_b3_B4_R5_X8.

Finally, the complete solution is found to be r1_g2_b3_B4_R5_X9 and
r1_g2_b3_b4_r5_X9

This NEP processes all the solutions at the same time. It removes all the
coloring combinations that violate any constraint. In the last step the �nal
node contains all the solutions found. [6] describes one of the kinds of NEPs
(simple NEPs) that is simulated by jNEPs. As we have brie�y mentioned
before, we have observed that the authors have used slightly di�erent �lters
for the 3-coloring problem. We could not use these �lters and we had to change
some of them (most of the output �lters) for the NEP to behave properly. The
complete XML �le is available at http://jnep.e-delrosal.net.

2 Some Applications of NEPs to Language Processing

2.1 PNEPs: top-down parsing for natural languages

Motivation

Syntactic analysis is one of the classical problems related to language process-
ing, and applies both to arti�cial languages (formal languages such as, for
instance, programming languages) and to natural ones (those that people use
to write and talk).

There is an ample range of parsing tools that computer scientists and
linguists can use. They share a common goal (parsing), but have obvious dif-
ferences: some are based on the theoretical foundations of Computer Science
(automata, Chomsky grammars) while others mix several formal and infor-
mal techniques [14]: for example, generalized deterministic parsing, linear-
time substring parsing, parallel parsing, parsing as intersection, non-canonical
methods or non-Chomsky systems [15].

The characteristics of the particular language determine the suitability
of the parsing technique. Two of the main di�erences between natural and
formal languages are ambiguity and the size of the required representation.
Ambiguity creates many di�culties for parsing, so programming languages
are usually designed to be non ambiguous. On the other hand, ambiguity is
an almost implicit characteristic of natural languages, so it should be taken
into account by parsing techniques. To compare the size of di�erent repre-
sentations, the same formalism should be used. Context-free grammars are
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widely used to describe the syntax of languages. It is possible to informally
compare the sizes of context free grammars for some programming languages
(such as C) and for some natural languages (such as Spanish). We conjecture
that the representations required to parse natural languages are frequently
greater than those required for high level imperative programming languages.

Parsing techniques for programming languages usually restrict the repre-
sentation (grammar) used in di�erent ways: it must be unambiguous, recur-
sion is restricted, lambda rules must be removed, they must be (re)written
according to some speci�c normal form, etc. These conditions mean that the
designer of the grammar has more work to do, and that non-experts in the
�eld of formal languages will have greater di�culty in properly understanding
the grammar. This may be one of the reasons why formal representations such
as grammars are little used or even unpopular. Natural languages usually do
not ful�ll these constraints.

These paragraphs focus on formal representations (based on Chomsky
grammars) that can be used for syntactic analysis, and specially those which
do not comply with these kinds of constraints. In this way, our approach will
be applicable to both natural and formal languages.

Formal parsing techniques for natural languages are ine�cient. The sen-
tences that these techniques can usually parse are short (usually less than a
typical computer program).

This chapter also focus on new models to increase the e�ciency of parsing
for languages with non-restricted context free grammars: we propose the use
of NEPs as e�cient parsing tools. In other sections of the current volume
we show how we can e�ciently access parallel hardware, such as clusters of
computers, in order to simulate NEPs. Our goal is to provide the scienti�c
community with e�cient parsing tools that can be run on parallel platforms
when they are available.

In the paragraphs below we will introduce the peculiarities of the syntactic
analysis of natural languages, and PNEPs, an extension to NEPs that makes
them suitable for e�cient parsing of any kind of context free grammars, par-
ticularly those applicable to languages that share characteristics with natural
languages (inherent ambiguity, for example). We have designed a top-down
parser for context free grammars without additional constraints. Bellow we
informally describe the algorithm, formally de�ne it, detail a jNEP implemen-
tation and discuss some examples.

TRIANGLE 7 • March 2012



78 A. Ortega de la Puente et al.

Introduction to analysis of natural languages with NEPs

Computational Linguistics researches linguistic phenomena that occur in dig-
ital data. Natural Language Processing (NLP) is a sub�eld of Computational
Linguistics that focuses on building automatic systems that can interpret or
generate information written in natural language [26]. This is a broad area
which poses a number of challenges, both for theory and for applications.

Machine Translation was the �rst NLP application in the �fties [27]. In
general, the main problem found in all cases is the inherent ambiguity of the
language [22].

A typical NLP system has to cover several linguistic levels:

• Phonological: Sound processing to detect expression units in speech.
• Morphological: Extracting information about words, such as their part

of speech and morphological characteristics [21, 2]. The best systems have
an accuracy of 97% in this level [4].

• Syntactical: Using parsers to detect valid structures in the sentences,
usually in terms of a certain grammar. One of the most e�cient algo-
rithms is the one described by Earley and its derivatives [11, 24, 28]. It
provides parsing in polynomial time, with respect to the length of the
input (linear in the average case; n2 and n3, respectively, for unambigu-
ous and ambiguous grammars in the worst case) These sections focus on
this step. Syntactical analysis for natural language requires considerable
of computational resources. Parsers can usually only completely analyze
short sentences. Shallow parsing tries to overcome this di�culty. Instead of
a complete derivation tree for the sentence, this parsing technique actually
builds partial derivation trees for its elemental components.

• Semantic: Finding the most suitable knowledge formalism to represent
the meaning of the text.

• Pragmatic: Interpreting the meaning of the sentence in a context which
makes it possibe to react accordingly.

The last two levels are still far from being solved [13].
Figure 4 shows the way in which typical NLP systems usually cover the

linguistic levels described above.
A computational model that can be applied to NLP tasks is a network of

evolutionary processors (NEPs). NEP as a generating device was �rst intro-
duced in [10] and [9]. The topic is further investigated in [7], while further
di�erent variants of the generating machine are introduced and analyzed in
[5, 17, 18, 19, 20].
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Fig. 4. Typical phases in natural language processing

The �rst attempt was made to apply NEPs for syntactic NLP parsing
in [3]. We have the same goal: to test the suitability of NEPs for this task.
We have previously mentioned some performance characteristics of one of the
most popular families of NLP parsers (those based on Earley's algorithm).
We will conclude that the complexity of our approach is similar.

While [3] outlines a bottom up approach to natural language parsing with
NEPs, we suggest a top-down strategy and show its possible use in a practical
application.

Top down parsing with NEPs and jNEP

Informal description Other authors have studied the relationships between
NEPs, regular, context-free, and recursively enumerable languages [14-18].
[21] shows how NEPs simulate the application of context free rules (A →
α,A ∈ V, α ∈ V ∗ for alphabet V ): a set of additional nodes is needed to
implement a rather complex technique to rotate the string and locate A in
one of the string ends, then delete it and add all the symbols in α. PNEPs
use context free rules rather than classic substitution (A→ B,A,B ∈ V ), as
well as insertion and deletion NEP rules. In this way, the expressive power of
NEP processors is bounded, while providing a more natural and comfortable
way to describe the parsed language for practical purposes.
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PNEPs implement a top down parser for context free grammars. Like any
other parsers, PNEPs have to build the derivation tree of the string being
parsed. We have added a simple mechanism to solve this task. We have used
indexes to identify the rules added to the sentential form when each rule is
applied. The generated string includes these indexes, making it possible to
reconstruct the derivation tree. Several examples are shown below. A PNEP
for a given grammar can explicitly generate all the possible derivations of
each string in the language generated by the grammar. Its temporal complex-
ity is bounded by the length of the analyzed string (actually by the depth
of the derivation tree, that is, by the logarithm of the length). This bound
can be used to stop the computation when processing incorrect strings, thus
avoiding the possibility that the PNEP runs for an in�nite number of steps.
Nevertheless, this naive approach seems to be spatially ine�cient, because of
the high number of strings and derivations simultaneously considered which
the processors have to store. We have added two additional mechanisms to
overcome this ine�ciency:

Discarding non promising sentential forms

The �rst check we have implemented is the lightest, and it is present in almost
all the parsers: discard any sentential form that contains a terminal symbol
that the analyzed string does not contain. Parsers usually check sequentially
for this condition, starting at the right end of the string. NEPs �lters make
it possible to check the condition regardless of the positions in the sentential
form where the incorrect symbols are. We have implemented this feature by
means of an additional node which contains just one deletion rule that deletes
nothing (no symbol). In this way we can prevent the whole string from being
lost when the evolutionary step is executed in the node. The pruning actually
happens during the communication step, because it is implemented by the
input �lters. A string can pass the �lter if it contains only non terminals, or
terminals that belong to the input string being parsed. PNEPs duplicate the
number of steps needed to parse a string, but reduce the number of strings
stored by the processors.

Forcing a left-most derivation order

Applying all the possible rules in parallel to a sentential form produces a lot
of di�erent derivations that are actually the same derivation tree. They only
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di�er in the order in which the non terminal symbols of the same sentential
form are derived. We extend the NEP model with a new specialized kind of
context free evolutive rule that applies only to the left-most non terminal. The
symbol →l will be used to represent this kind of rule. The result of applying
the rule r : A →l s, where s ∈ V ∗ (V stands for the NEP's alphabet) on a
given string w, can be formally de�ned as follows:

r(w) =

t where w = w1Aw2, t = w1sw2, not_contains(w1, A), s ∈ V ∗, w1 ∈ V ∗, and w2 ∈ V ∗

For example, the rule r : A→l s will change the following words as shown
below:

Aw1 ⇒ sw1 (changes the left-most ocurrence of non-terminal A, which is the
left-most non-terminal)

BAw1 ⇒ Bsw1 (changes the left-most ocurrence of non-terminal A, although
non-terminal B is on its left)

cdAw1 ⇒ cdsw1 (now there are terminals to the left of A)

From context free grammars to PNEPs

The PNEP is built from the grammar in the following way:

1. We assume that each derivation rule in the grammar has a unique index
that can be used to reconstruct the derivation tree.

2. There is a node for each non terminal (deriving nodes) that applies to its
strings all the derivation rules for its left-most non terminal.

3. There is an additional node (discarding node) which discards non promis-
ing sentential forms. It receives all the sentential forms generated and
sends to the net those that just contain non terminal symbols or termi-
nals which are also contained in the input string.

4. The deriving nodes are connected only to the discarding node.
5. There is an output node, in which the parsed string can be found: this is a

version of the input, enriched with information that will make it possible
to reconstruct the derivation tree (the rules indexes).

6. The output node is connected with all the deriving nodes.

Obviously the same task can be performed using a trivial PNEP with only
one deriving node for all the derivation rules. However, the proposed PNEP
is easier to analyze and makes it easier to distribute the work among several
nodes.
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We will use the following grammar as an example for some of the steps
outlined above. Let us consider grammar Ganbnom induced by the following
derivation rules (notice that indexes have been added in front of the corre-
sponding right hand side):

X → (1)SO , S → (2)aSb|(3)ab , O → (4)Oo|(5)oO|(6)o

It is easy to prove that the language corresponding to this grammar is
{anbnom | n,m > 0}. Furthermore, the grammar is ambiguous, since every
sequence of o symbols can be generated in at least two di�erent ways: by
producing the new terminal o with rule 4 or rule 5.

The input �lters of the output node describe parsed copies of the initial
string. In other words, strings whose symbols are preceded by strings of any
length (including 0) of the possible rules indexes. As an example, a parsed
version of the string aabboo would be 12a3abb5o6o.

Formal description We will now describe the way in which our PNEP is
de�ned, starting from a certain grammar. Given the context free grammar
G = {ΣT = {t1, ..., tn}, ΣN = {N1, ..., Nm}, A, P} with A ∈ ΣN its axiom
and P = {Ni → γj | j ∈ {1, .., k}, i ∈ {1, ..., n} ∧ γj ∈ (ΣT ∪ΣN )∗} its set of
k production rules; the PNEP is de�ned as

ΓG = (V = ΣT ∪ΣN ∪{1, ..., k}, nodeoutput, N1, N2, ..., Nm, N
t
1, N

t
2, ..., N

t
m, G)

where

1. Ni is the family of deriving nodes. Each node contains the following set
of rules: {Ni →l γj} ({Ni → γj} are the derivation rules for Ni in G)

2. N t is the discarding node. As has been mentioned above it only contains
the deletion rule →

3. nodeoutput is the output node
4. G is a graph that contains an edge for
• Each pair (Ni, nodeoutput)
• Each pair (Ni, N t

i )
5. The input node A is the only one with a non empty initial content (A)
6. The �lters for each node are designed to produce the behavior informally

described above. In general, the deriving nodes have empty output �lters

For example, the PNEP for grammar Ganbnom described above has a node
for nonterminal S with the following substitution rules: {S → 2aSb, S → 3ab}.
The input �lter for this node allows all strings containing some copy of their
non terminal S to be input in the node.

TRIANGLE 7 • March 2012



NEPs Applied to Solve Speci�c Problems 83

The input �lter for the output node nodeoutput has to describe what we
have called parsed strings. Parsed strings will contain numbers, correspond-
ing to the derivation rules which have been applied, among the symbols of
the initial string. For PInodeoutput

, we can easily create membership condi-
tions. For example, in order to parse the string aabbo with the grammar
given above, the regular expression can be {1, 2, 3, 4, 5, 6}∗a{1, 2, 3, 4, 5, 6}∗a
{1, 2, 3, 4, 5, 6}∗b{1, 2, 3, 4, 5, 6}∗b{1, 2, 3, 4, 5, 6}∗o. Our PNEP will stop com-
puting whenever a string enters the output node.

For the discarding node, PINt is a random context �lter of type 2, where
P = {a, b, o,X, S,O} and F = ∅. The derivation nodes have a random context
PINi

of type 1, where P = {Ni} and F = ∅. Finally, any other �lters are
designed to accept any word without additional constraints.

The complete PNEP for our example (Γanbnom) is de�ned as follows:

• Alphabet V = {X,O, S, a, b, o, 1, 2, 3, 4, 5, 6}
• Nodes

� nodeoutput:
· Aoutput = ∅ is the initial content;
· Moutput = ∅ is the set of rules;
· PIoutput = { (regular expression membership �lter);
· {{1, 2, 3, 4, 5, 6} ∗ a{1, 2, 3, 4, 5, 6} ∗ a{1, 2, 3, 4, 5, 6} ∗ b{1, 2, 3, 4, 5, 6} ∗

b{1, 2, 3, 4, 5, 6} ∗ o}};
· POoutput = ∅ is the output �lter

� NX :
· AX = {X};
· MX = {X →l 1SO};
· PIX = {P = {X}, F = ∅};
· POX = ∅

� NS :
· AS = ∅;
· MS = {S →l 2aSb, S →l 3ab};
· PIS = {P = {S}, F = ∅};
· POS = ∅

� NO:
· AO = ∅;
· MO = {O →l 4oO,O →l 5Oo,O →l 5o};
· PIO = {P = {O}, F = ∅};
· POO = ∅

� N t:
· A = {};
· M = {→};
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· PI = {P = {X,O, S, a, b, o}, F = ∅};
· PO = {F = ∅, P = ∅}

� Its graph contains an edge for each pair {(NX , N
t), (NS , N

t), (NO, N
t),

(NX , nodeoutput), (NS , nodeoutput), (NO, nodeoutput)}
� It stops the computation when some string enters nodeoutput

The following shows some of the strings generated by all the nodes of the
PNEP in succesive communication steps, when parsing the string aboo (each
set corresponds to a di�erent step):
{X} ⇒ {1SO} ⇒ {..., 13abO, ...} ⇒ {..., 13ab4Oo, 13ab5oO, ...} ⇒

{..., 13ab46oo, ..., 13ab5o6o, ...}
The last set contains two di�erent derivations for aboo by (Ganbnnom),

which can enter the output node and stop the computation of the PNEP.
It is easy to reconstruct the derivation tree from the parsed strings in the

output node, by following their sequence of numbers. For example, consider
the parsed string 13ab6o and its sequence of indexes 136; abo is generated in
the following steps: X ⇒ (rule 1 X ⇒ SO ) SO , SO ⇒ (rule 3 S ⇒ ab ) abO
, abO ⇒ (rule 6 O ⇒ o ) abo

jNEP description of PNEPs In a previous section we have described the struc-
ture of the XML input �les for jNEP.

In order to keep jNEP as general as possible, we have added new xml
descriptions for each extension needed in PNEP.

Context free rules are represented in the xml �le as follows:

<RULE ruleType=``contextFreeParsing'' symbol=``[symbol]'' newString=``[symbolList]''/>

Those applied to the left-most non terminal, however, use this syntax:

<RULE ruleType="leftMostParsing" symbol="NON-TERMINAL" string="SUBSTITUTION_STRING"

nonTerminals="GRAMMAR_NON-TERMINALS"/>

Three of the sections of the xml representation of the PNEP Γanbnom

de�ned above (the output node, the derivating node for axiom X and the
discarding node) are shown below.

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT" symbol=""/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="RegularLangMembershipFilter"

regularExpression="[1-6]*a[1-6]*b[1-6]*o[1-6]*o"/>

<OUTPUT type="1" permittingContext="" forbiddingContext="a_b_o_o"/>

</FILTERS>

</NODE>
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<NODE initCond="X">

<EVOLUTIONARY_RULES>

<RULE ruleType="leftMostParsing" symbol="X" string="1_S_O" nonTerminals="S_O_X"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="X" forbiddingContext=""/>

</FILTERS>

</NODE>

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT" symbol=""/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="2" permittingContext="a_b_o_o_0_1_2_3_4_5_S_O_X"

forbiddingContext=""/>

</FILTERS>

</NODE>

The nodes for other non terminal symbols are similar, but with an empty
(””) initial condition and their corresponding derivation rules.

An example for natural language processing

As described in a previous section, the complexity of the grammars used for
syntactic parsing depends on the desired target. These grammars are usually
very complex, which makes them one of the bottlenecks in NLP tasks.

We will use the grammar deduced from the following derivation rules,
whose axiom is the non terminal Sentence. This grammar is similar to gram-
mars devised by other authors in previous attempts to use NEPs for parsing
(natural) languages [19]. We have added the index of the derivation rules that
will be used later.
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Sentence → (1) NounPhraseStandard PredicateStandard
| (2) NounPhrase3Singular Predicate3Singular

NounPhrase3Singular → (3) DeterminantAn VowelNounSingular
| (4) DeterminantSingular NounSingular
| (5) Pronoun3Singular

NounPhraseStandard → (6) DeterminantPlural NounPlural
| (7) PronounNo3Singular

NounPhrase → (8) NounPhrase3Singular | (9) NounPhraseStandard
PredicateStandard → (10) VerbStandard NounPhrase
Predicate3Singular → (11) Verb3Singular NounPhrase

DeterminantSingular → (12) a | (13) the | (14) this
DeterminantAn → (15) an

VowelNounSingular → (16) apple
NounSingular → (17) boy

Pronoun3Singular → (18) he | (19) she | (20) it
DeterminantPlural → (21) the | (22) several | (23) these

NounPlural → (24) apples | (25) boys
PronounNo3Singular → (26) I | (27) you | (28) we | (29) they

VerbStandard → (30) eat
Verb3Singular → (31) eats

As we have described above, NLP syntax parsing usually takes the results
of the morphological analysis as input. In this way, the previous grammar can
be simpli�ed by removing the derivation rules for the last 9 non terminals
(from DeterminantSingular to Verb3Singular): these symbols become termi-
nals for the new grammar.

Notice, also, that this grammar implements grammatical agreement by
means of context free rules. For each non terminal, we had to use several
di�erent specialized versions. For instance, NounPhraseStandard and Noun-
Phrase3Singular are specialized versions of non terminal NounPhrase. These
rules increase the complexity of the grammar.

We can build the PNEP associated with this context-free grammar by
following the steps described in the corresponding section.

Let us consider the English sentence the boy eats an apple. Some of the
strings generated by the nodes of the PNEP in successive communication
steps while parsing this string are shown below (we show the initials, rather
than the full name of the symbols).

A left derivation of the string is highlighted: { S } ⇒ { ..., 2 NF3S P3S,
... } ⇒ { ..., 2 4 DS NS P3S, ... } ⇒ { ..., 2 4 13 the NS P3S, ... } ⇒ { ..., 2 4
13 the 17 boy P3S, ... } ⇒ { ..., 2 4 13 the 17 boy 11 V3S NF, ... } ⇒ { ...,
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2 4 13 the 17 boy 11 31 eats NF, ... } ⇒ { ..., 2 4 13 the 17 boy 11 31 eats 8
NF3S, ... } ⇒ { ..., 2 4 13 the 17 boy 11 31 eats 8 3 DA VNS, ... } ⇒ { ..., 2
4 13 the 17 boy 11 31 eats 8 3 15 an VNS, ... } ⇒ { ..., 2 4 13 the 17 boy 11
31 eats 8 3 15 an 16 apple, ... }

The following fragments of the jNEP output for this case show more detail
of the contents of some nodes of the PNEP during its execution.

Notice that

• Node 16 is the discarding node, node 17 is the output node and the rest
are the deriving nodes.

• The indexes of the rules added to the string in order to build the derivation
tree include two numbers:
1. The �rst one identi�es their non terminal
2. The second identi�es the right hand side
For example, index 1-8 refers to the eighth right hand side of the �rst non
terminal.

• The string [...] means that a piece of output is not shown to save space.
Comments are also written between square brackets.

*************** NEP INITIAL CONFIGURATION ***************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 9 ---

--- Evolutionary Processor 10 ---

Sentence

--- Evolutionary Processor 11 ---

[...]

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 1 **************

[...]

--- Evolutionary Processor 10 ---

10-1_NounPhraseStandard_PredicateStandard 10-0_NounPhrase3Singular_Predicate3Singular

[...]

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 2 ************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 15 ---
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--- Evolutionary Processor 16 ---

10-1_NounPhraseStandard_PredicateStandard 10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 3 **************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 15 ---

--- Evolutionary Processor 16 ---

10-1_NounPhraseStandard_PredicateStandard 10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 4 ************

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

--- Evolutionary Processor 2 ---

--- Evolutionary Processor 3 ---

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 4 ---

--- Evolutionary Processor 5 ---

--- Evolutionary Processor 6 ---

--- Evolutionary Processor 7 ---

10-1_NounPhraseStandard_PredicateStandard

--- Evolutionary Processor 8 ---

--- Evolutionary Processor 9 ---

--- Evolutionary Processor 10 ---

--- Evolutionary Processor 11 ---

--- Evolutionary Processor 12 ---

--- Evolutionary Processor 13 ---

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 14 ---

--- Evolutionary Processor 15 ---

10-1_NounPhraseStandard_PredicateStandard

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 5 **************

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 6 ************

[...]
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*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 7 **************

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 8 ************

[...]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 9 **************

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

--- Evolutionary Processor 2 ---

10-0_3-0_2-2_he_Predicate3Singular 10-0_3-0_2-1_she_Predicate3Singular

10-0_3-0_2-0_it_Predicate3Singular

--- Evolutionary Processor 3 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 4 ---

10-1_7-1_4-1_several_NounPlural_PredicateStandard

10-1_7-1_4-2_the_NounPlural_PredicateStandard

10-1_7-1_4-0_these_NounPlural_PredicateStandard

--- Evolutionary Processor 5 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 6 ---

--- Evolutionary Processor 7 ---

--- Evolutionary Processor 8 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

--- Evolutionary Processor 9 ---

10-1_7-0_9-2_you_PredicateStandard 10-1_7-0_9-0_they_PredicateStandard

10-1_7-0_9-3_I_PredicateStandard

10-1_7-0_9-1_we_PredicateStandard

--- Evolutionary Processor 10 ---

--- Evolutionary Processor 11 ---

10-0_3-1_11-2_a_NounSingular_Predicate3Singular

10-0_3-1_11-0_this_NounSingular_Predicate3Singular

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

--- Evolutionary Processor 12 ---

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 13 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 14 ---

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

--- Evolutionary Processor 15 ---

10-1_NounPhraseStandard_PredicateStandard

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-1_7-0_PronounNo3Singular_PredicateStandard

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 10 ***********
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--- Evolutionary Processor 0 ---

[...]

[AT THIS POINT, PARSING TREES WITH INCORRECT TERMINALS HAVE BEEN PRUNED]

--- Evolutionary Processor 16 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-1_7-1_4-2_the_NounPlural_PredicateStandard

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 11 *************

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 16 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-1_7-1_4-2_the_NounPlural_PredicateStandard

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 12 ***********

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

--- Evolutionary Processor 2 ---

10-0_3-0_Pronoun3Singular_Predicate3Singular

--- Evolutionary Processor 3 ---

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 4 ---

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

--- Evolutionary Processor 5 ---

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 6 ---

--- Evolutionary Processor 7 ---

--- Evolutionary Processor 8 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

--- Evolutionary Processor 9 ---

--- Evolutionary Processor 10 ---

--- Evolutionary Processor 11 ---

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

--- Evolutionary Processor 12 ---

TRIANGLE 7 • March 2012



NEPs Applied to Solve Speci�c Problems 91

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

--- Evolutionary Processor 13 ---

10-0_3-2_5-0_an_VowelNounSingular_Predicate3Singular

10-0_3-1_DeterminantSingular_NounSingular_Predicate3Singular

10-0_3-0_Pronoun3Singular_Predicate3Singular

10-0_3-2_DeterminantAn_VowelNounSingular_Predicate3Singular

10-0_3-1_11-1_the_NounSingular_Predicate3Singular

10-0_NounPhrase3Singular_Predicate3Singular

--- Evolutionary Processor 14 ---

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-1_7-1_4-2_the_NounPlural_PredicateStandard

--- Evolutionary Processor 15 ---

10-1_NounPhraseStandard_PredicateStandard

10-1_7-1_DeterminantPlural_NounPlural_PredicateStandard

10-1_7-0_PronounNo3Singular_PredicateStandard

10-1_7-1_4-2_the_NounPlural_PredicateStandard

--- Evolutionary Processor 16 ---

--- Evolutionary Processor 17 ---

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 13 *************

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 14 ***********

[...]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 15 *************

[...]

[...]

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 38 ***********

--- Evolutionary Processor 0 ---

[...]

--- Evolutionary Processor 16 ---

10-0_3-2_5-0_an_12-0_apple_13-0_6-0_eats_0-0_7-0_PronounNo3Singular

10-0_3-2_5-0_an_12-0_apple_13-0_6-0_eats_0-1_3-2_5-0_an_VowelNounSingular

10-0_3-2_5-0_an_12-0_apple_13-0_6-0_eats_0-1_3-1_11-1_the_8-0_boy

[...]

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-0_NounPhraseStandard

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-1_3-2_DeterminantAn_VowelNounSingular

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-0_7-1_DeterminantPlural_NounPlural

[...]

--- Evolutionary Processor 17 ---

10-0_3-1_11-1_the_8-0_boy_13-0_6-0_eats_0-1_3-2_5-0_an_12-0_apple

----------------------- NEP has stopped!!! -----------------------

Stopping condition found: net.e_delrosal.jnep.stopping.NonEmptyNodeStoppingCondition

------------------------------------------------------------------

If we analyze an incorrect sentence, such as the boy eat the apple, the PNEP
will continue the computation after the steps summarized above, because in
this case it is impossible to �nd a parsed string. To modify our PNEP to stop
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when this happens, it is enough to take into account that the length of the
input string is a bound for the number of steps needed (it is always possible
to get equivalent context free grammars without chaining and lambda rules;
in addition, the length of a given string is usually less than the depth of its
derivation trees).

2.2 PNEPs for shallow parsing

Motivation

The goal of the following paragraphs is to modify and use PNEPs for shallow
parsing. Shallow parsing will be described later. It is a parsing technique
frequently used in natural language processing to overcome the ine�ciency of
other approaches to syntactic analysis.

Some of the authors of this contribution were involved in developing
IBERIA, a corpus of scienti�c Spanish which is able to process the sentences
at the morphological level.

We are very interested in adding syntactic analysis tools to IBERIA. The
current contribution has this goal.

Below we will introduce shallow parsing and FreeLing, a well-known free
platform that o�ers parsing tools such as a Spanish grammar and shallow
parsers for this grammar.

Then we will show how PNEPs can be used for shallow parsing and de-
scribe a jNEP implementation. Finally some examples will be given.

Introduction to FreeLing and shallow parsing

Let us summarize some of the main di�culties encountered by parsing tech-
niques when building complete parsing trees for natural languages:

• Spatial and temporal performance of the analysis. The Early algorithm
and its derivatives [11, 24, 28] are some of the most e�cient approaches.
They, for example, provide parsing in polynomial time, with respect to the
length of the input. Its time complexity for parsing context-free languages
is linear in the average case, while in the worst case it is n2 and n3,
respectively, for unambiguous and ambiguous grammars.

• The size and complexity of the corresponding grammar, which is also dif-
�cult to design. Natural languages, for instance, are usually ambiguous.
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The goal of shallow parsing is to analyze the main components of the
sentences (for example, noun groups, verb groups, etc.) rather than complete
sentences. It ignores the actual syntactic structure of the sentences, which are
considered to be merely sets of these basic blocks. Shallow parsing tries to
overcome, in this way, the performance di�culties that arise when building
complete derivation trees.

Shallow parsing produces sequences of subtrees. These subtrees are fre-
quently shown as children of a �ctitious root node. This way of presenting the
results of the analysis can confuse the inexperienced reader, because the �nal
tree is not a real derivation tree: neither is its root the axiom of the grammar
nor its branches correspond to actual derivation rules.

Shallow parsing includes di�erent particular algorithms and tools (for in-
stance FreeLing [25] or cascades of �nite-state automata [16])

FreeLing is An Open Source Suite of Language Analyzers that provides
the scientist with several tools and techniques. FreeLing includes a Spanish
context-free grammar, adapted for shallow parsing, that does not contain a
real axiom. This grammar has almost two hundred non-terminals and ap-
proximately one thousand rules. The actual number of rules is even greater,
because they use regular expressions rather than terminal symbols. Each rule,
then, represents a set of rules, depending on the terminal symbols that match
the regular expressions.

The terminals of the grammar are part-of-speech tags produced by the
morphological analysis. So they include labels like �plural adjective�, �third
person noun� etc.

Figure 8 shows the output of FreeLing for a very simple sentence like �Él
es ingeniero�5.

FreeLing built three subtrees: two noun phrases and a verb. After that,
FreeLing just joins them under the �ctitious axiom. Figure 5 shows a more
complex example.

PNEP extension for shallow parsing

The main di�culty involved in adapting PNEPs to shallow parsing is the
�ctitious axiom. PNEPs are designed to handle context free grammars that
must have an axiom.

We have also found additional di�culties in the way in which FreeLing
reduces the number of derivation rules required by its grammar. As we have

5 He is an engineer
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Fig. 5. FreeLing output for �Aquel chico es un gran ingeniero� (That guy is a great

engineer)

mentioned above, FreeLing uses regular expressions rather than terminal sym-
bols. This kind of rules actually represents a set of rules: those whose terminals
match the regular expressions. We have also added this mechanism to PNEPs
in the corresponding �lters that implement the matching.

In the paragraphs below we will explain both problems in greater detail.
The virtual root node and the partial derivation trees (for the di�erent

components of the sentence) force some changes in the behavior of PNEPs.
Firstly, we have to derive many trees at once, one for each constituent, instead
of only one tree for the complete sentence. Therefore, all the nodes that will
apply derivation rules for the nonterminals associated with the components
in which the shallow parser is focused will contain their symbol in the initial
step. In [23] the nodes of the axiom were the only non empty nodes. More
formally:

• Initially, in the original PNEP [23], the only non empty node is associated
with the axiom and contains a copy of the axiom. Formally (NA and ΣN
stand, respectively, for the node associated with the axiom and the set of
nonterminal symbols of the grammar under consideration)
INA

= A

∀Ni ∈ ΣN , i 6= A→ INi = ∅
• The initial conditions of the PNEP for shallow parsing are:
∀Ni, INi = i

In this way, the PNEP produces every possible derivation sub-tree begin-
ning from each non-terminal, as if they were axioms of a virtually independent
grammar. However, those sub-trees have to be concatenated and then joined
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to the same parent node (virtual root node of the �ctitious axiom). We get this
behavior with splicing rules [8], [18] in the following way: (1) the PNEP marks
the end and the beginning of the sub-trees with the symbol %, (2) splicing
rules are applied to concatenate couples of sub-trees, taking the beginning of
the �rst one and the end of the second as the splicing point.

To be more precise, a special node is responsible for the �rst step. Its
speci�cation in jNEP is the following:

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="insertion" actionType="RIGHT" symbol="%"/>

<RULE ruleType="insertion" actionType="LEFT" symbol="%"/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="2" permittingContext="SET_OF_VALID_TERMINALS"

forbiddingContext=""/>

<OUTPUT type="RegularLangMembershipFilter"

regularExpression="%%.*|%.*%|.*%%"/>

</FILTERS>

</NODE>

During the second step the splicing rules concatenate the sub-trees. We
could choose a specialized node (just one node) or a set of nodes depending
on the degree of parallelism we prefer. The splicing rule required could be
de�ned as follows:

<RULE ruleType="splicingChoudhary" wordX="terminal1" wordY="%"

wordU="%" wordV="terminal2"/>

Where terminal2 follows terminal1 in the sentence at any place. It should
be remembered that % marks the end and beginning of the derivation trees.
If the sentence has n words, there are n-1 rules/points for concatenation. It
is important to note that only splicing rules that create a valid sub-sentence
are actually concatenated. 6

For example, if the sentence to be parsed is a_b_c_d, we would need the
following rules:

<RULE ruleType="splicingChoudhary" wordX="a" wordY="%"

wordU="%" wordV="b"/>

<RULE ruleType="splicingChoudhary" wordX="b" wordY="%"

wordU="%" wordV="c"/>

<RULE ruleType="splicingChoudhary" wordX="c" wordY="%"

wordU="%" wordV="d"/>

They could concatenate two sub-sentences like b_c and d, resulting in
b_c_d.
6 In fact, we are using Choudhary splicing rules [8] with a little modi�cation to
ignore the symbols that belong to the trace of the derivation.
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Our PNEP for the FreeLing's Spanish grammar

The jNEP con�guration �le for our PNEP adapted to FreeLing's grammar is
large. It has almost 200 hundred nodes and some nodes have dozens of rules.
We will show, however, some of its details. Let the sentence to be parsed be
�Él es ingeniero�. The output node has the following de�nition:

<NODE initCond="">

<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="RIGHT" symbol=""/>

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="RegularLangMembershipFilter"

regularExpression=

"%[0-9\-]*(PP3MS000|PP\*)[0-9\-]*(VSIP3S0|VSI\*)

[0-9\-]*(NCMS000|NCMS\*|NCMS00\*)%"/>

<OUTPUT type="1" permittingContext=""

forbiddingContext="PP*_PP3MS000_VSI*_VSIP3S0

_NCMS*_NCMS00*_NCMS000"/>

</FILTERS>

</NODE>

We have explained above that the input sentence includes part-of-speech
tags instead of actual Spanish words. This sequence of tags, together with
the indexes of the rules that will be used to build the derivation tree, are in
the input �lter for the output node. We can also see some tags written as
regular expressions. We have added this kind of tags because FreeLing also
uses regular expressions to reduce the size of the grammar.

As an example, we show the speci�cation of one of the deriving nodes.
We can see below that the non-terminal group-verb has many rules. The rule
with trace ID 70-7 is the one that is actually needed to parse our example.

<NODE initCond="grup-verb" id="70">

<EVOLUTIONARY_RULES>

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-0_grup-ve[...]

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-1_grup-ve[...]

<RULE ruleType="leftMostParsing" symbol="grup-verb"

string="70-7_verb" [...]

[...]

</EVOLUTIONARY_RULES>

<FILTERS>

<INPUT type="1" permittingContext="grup-verb"

forbiddingContext=""/>

</FILTERS>

</NODE>
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The output of jNEP is also considerable. However, we can show at least the
main dynamics of the process (see Figures 6 and 7). The comments between
brackets provide explanations to facilitate understanding.

***************NEP INITIAL CONFIGURATION***************

--- Evolutionary Processor 0 ---

[THE INITIAL WORD OF EVERY DERIVATION NODE IS ITS CORRESPONDING

NON-TERMINAL IN THE GRAMMAR]

[...]

--- Evolutionary Processor 70 ---

grup-verb

[...]

--- Evolutionary Processor 112 ---

sn

[...]

--- Evolutionary Processor 190 ---

[THE OUTPUT NODE IS EMPTY]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP -

TOTAL STEPS: 1 ***************

[FIRST EXPANSION OF THE TREES]

[...]

--- Evolutionary Processor 70 ---

70-6_verb-pass 70-7_verb 70-0_grup-verb_patons_patons_patons[...]

[...]

--- Evolutionary Processor 112 ---

112-104_grup-nom 112-103_grup-nom-ms 112-97_pron-mp 112-95_pron-ns[...]

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP -

TOTAL STEPS: 2 ***************

--- Evolutionary Processor 0 ---

[THE FIRST TREES WITH ONLY TERMINALS APPEAR AT THE BEGINNING OF

SPLICING SUB-NET]

--- Evolutionary Processor 178 ---

57-3_NCMS00* 151-35_VSI* 1-2_PP3MS000 99-0_NCMS* 121-2_VSI*

[...]

[THE REST GO TO THE PRUNING NODE]

--- Evolutionary Processor 189 ---

112-87_psubj-mp_indef-mp 8-3_s-a-ms 44-6_prep_s-a-fp [...]

Fig. 6. jNEP output for �Él es ingeniero�. 1 of 2

As jNEP shows, the output node contains more than one derivation tree.
We design the PNEP in this way because ambiguous grammars have more
than one possible derivation tree for the same sentence. In this case, our
PNEP will produce all the possible derivation trees, while FreeLing is only
able to show the most likely.

Figure 8 also clearly corresponds to the output of jNEP when our PNEP
is run for shallow parsing.
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*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 4 ************

[THE PROCESS OF MARKING THE END AND THE BEGINNING STARTS]

[...]

--- Evolutionary Processor 178 ---

1-2_PP3MS000_% %_151-35_VSI* 57-3_NCMS00*_% %_1-2_PP3MS000 %_99-0_NCMS* 99-0_NCMS*_%

151-35_VSI*_% 121-2_VSI*_% %_121-2_VSI* %_57-3_NCMS00*

[...]

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 7 **************

[THE SPLICING SUB-NET STARTS TO CONCATENATE THE SUB-TREES]

[...]

--- Evolutionary Processor 178 ---

156-3_1-2_PP3MS000_% 77-13_57-3_NCMS00*_% %_70-7_151-35_VSI* 34-11_99-0_NCMS*_%

%_111-4_1-2_PP3MS000 111-4_1-2_PP3MS000_% 70-7_151-35_VSI*_% %_77-13_57-3_NCMS00*

%_34-11_99-0_NCMS* %_156-3_1-2_PP3MS000

[...]

--- Evolutionary Processor 187 ---

%_121-2_VSI*_99-0_NCMS*_% %_% %_151-35_VSI*_% %_99-0_NCMS*_% %_121-2_VSI*_%

%_151-35_VSI*_99-0_NCMS*_%

--- Evolutionary Processor 188 ---

%_121-2_VSI*_57-3_NCMS00*_% %_151-35_VSI*_57-3_NCMS00*_% %_% %_151-35_VSI*_%

%_121-2_VSI*_% %_57-3_NCMS00*_%

[...]

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS: 18 ***********

[THE OUTPUT NODE RECEIVES THE RIGHT DERIVATION TREE. IT IS THE SAME AS THE ONE OUTPUT

BY FREELING]

--- Evolutionary Processor 190 ---

[THE FIRST ONE IS THE OUTPUT DESIRED]

%_112-99_111-4_1-2_PP3MS000_70-7_151-35_VSI*_112-103_77-13_57-3_NCMS00*_%

%_1-2_PP3MS000_151-35_VSI*_57-3_NCMS00*_%

[...]

Fig. 7. jNEP output for �Él es ingeniero�. 2 of 2
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