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An Introduction to Grammatical Inference for
Linguists

Leonor Becerra-Bonache?

Research Group on Mathematical Linguistics
Rovira i Virgili University, Spain.

1 Motivation

This paper is meant to be an introductory guide to Grammatical Inference
(GI), i.e., the study of machine learning of formal languages. It is designed
for non-specialists in Computer Science, but with a special interest in lan-
guage learning. It covers basic concepts and models developed in the frame-
work of GI, and tries to point out the relevance of these studies for natural
language acquisition.

How do children acquire their native language? This question has at-
tracted the attention of researchers from different areas, including linguis-
tics, cognitive science and computer science. Traditionally, this question has
been addressed by linguists and psychologists. Their approach has spe-
cially been focused on making experiments with children that are acquir-
ing their native language, with the ultimate goal of describing the process
of natural language acquisition. There are basically two different kinds of
studies: longitudinal studies (which focus on one child and collect data
regularly to create extensive databases that can be found at CHILDES:

? Supported by a Marie Curie International Fellowship within the 6th European
Community Framework Programme.



2 Leonor Becerra-Bonache

http://childes.psy.cmu.edu/); transversal studies (experiments are made
with a group of children of different ages. Researchers try to test a hypoth-
esis and design specific tasks that have to be performed by the children).
Although important results have been obtained from all these studies, there
are still many open questions about how children acquire their native lan-
guage. This is why researchers have tried to approach the problem from
a more interdisciplinary point of view, including such different scientific
disciplines as Computer Science.

Within the field of Computer Science, Artificial Intelligence aims to study
and design intelligent machines. This field was founded in the middle of
the 50s. It has two different purposes:

One is to use the power of computers to augment human thinking,
just as we use motors to augment human or horse power. Robotics and
expert systems are major branches of that. The other is to use a computer’s
artificial intelligence to understand how humans think. In a humanoid way.
If you test your programs not merely by what they can accomplish, but how
they accomplish it, then you’re really doing cognitive science; you’re using
Artificial Intelligence to understand the human mind. [34].

The founders of Artificial Intelligence were very optimistic about the
future of this new field. For example, in 1965, H. Simon predicted that
“... machines will be capable, within twenty years, of doing any work a man
can do” [33]. Although important advances have been made in the last
45 years, this prediction has not come true yet. We have machines that
can do “some of the things” that a man can do; for example, play soccer
(http://www.robocup.org/), play some instruments (like Toyota’s violin-
playing robot), express feelings by moving their faces (like the MIT’s robots:
MDS and Kismet). Nevertheless, so far machines have been unable to learn
to speak. The advantages of having a machine that can learn and speak a
natural language would be innumerable. From a theoretical point of view,
for example, we could better understand the process of natural language
acquisition. From a practical point of view, to have a machine that is able
to speak would definitely facilitate communication between humans and
machines.

Within the field of Artificial Intelligence, Machine Learning aims to de-
velop techniques that allow computers to learn. Machine Learning is con-
cerned with the design and development of algorithms that allow comput-
ers to use data to change their behavior (an algorithm is a finite sequence
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An Introduction to Grammatical Inference for Linguists 3

of instructions specifying how to solve a particular problem). Some of the
Machine Learning applications are: natural language processing, search en-
gines, medical diagnosis, detection of credit card fraud, classification of
DNA sequences, speech and handwriting recognition, etc.

Grammatical Inference is a specialized subfield of Machine Learning that
deals with the learning of formal languages from a set of examples. The
basic framework can be regarded as a game played between two players:
a teacher and a learner. The teacher provides data to the learner, and the
learner (or learning algorithm), from these data, must identify the underly-
ing language. For example, imagine that the target language (i.e., the lan-
guage to be learnt) is ab+ (i.e., a language that contains strings starting with
one a, followed by at least one b). The teacher could provide the learner
with strings that belong to the language (i.e., positive data), such as ab, abb,
abbb... The learner uses this information to infer that the target language is
ab+.

As we can see, this process has some similarities with the process of
natural language acquisition; instead of a teacher we could have an adult,
and instead of a learner, a child. Therefore, GI provides a good theoretical
framework to study the problem of natural language acquisition. In fact,
the initial theoretical foundations of GI were given by E.M. Gold, who was
primarily motivated by the problem of children’s language acquisition.

It is worth noting that the theory of formal languages was born in the
50’s as a tool to describe natural language syntax. Hence, formal languages
are an important tool to study natural languages. Moreover, formal results
are also of great interest, because as A. Clark [16] pointed out:

Positive results can help us to understand how humans might learn
languages by outlining the class of algorithms that might be used by hu-
mans, considered as computational systems at a suitable abstract level.
Conversely, negative results might be helpful if they could demonstrate
that no algorithms of a certain class could perform the task Ð in this case
we could know that the human child learns his language in some other
way [16, p. 26].

Therefore, by applying Grammatical Inference to the study of natural
language acquisition, we could provide a formal model that explains how
children acquire their native language. The study and development of a
formal model of language learning is of great relevance, not only to bet-
ter understand the process of natural language acquisition, but also for the
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4 Leonor Becerra-Bonache

practical applications that such a model could have (for example, commu-
nication between humans and machines could be improved).

The remainder of the paper is organized as follows. We give some basic
definitions in Section 2. In Section 3, we review some of the most important
formal models investigated in GI, and we analyze them from a linguistic
point of view. In section 4, we try to answer the following two questions:
what classes of formal languages are interesting from a linguistic point of
view? and what source of data should we provide our learning algorithm?
In Section 5 we present some new lines of research in GI, motivated by stud-
ies of children’s language acquisition. Concluding remarks are presented in
Section 6.

2 Basic definitions

Formal languages are defined with respect to a given alphabet. The al-
phabet is a finite set of symbols, denoted Σ (e.g., Σ = {a, b}). A finite
sequence of symbols chosen from some alphabet is called a string (e.g.,
a, b, aa, ab, ba, bb, aaa...). A language is a set of strings; among all the possi-
ble strings, some of them belong to the language and others do not (e.g.,
ab, abb, abbb belong to the language ab+, but a, ba, abba do not). A grammar
is a finite mechanism that generates the elements of the language.

The Chomsky grammars are particular cases of rewriting systems, where
the operation used to process the strings is rewriting (the replacement of
a “short" substring of the processed string by another short substring). Ac-
cording to the form of their rules, the Chomsky grammars are classified as
follows (from less to more expressive power): regular (REG), context-free
(CF), context-sensitive (CS), recursively enumerable (RE). We call this the
Chomsky hierarchy (see Figure 1). It is worth noting that Chomsky defined
these formal grammars/languages with the ultimate goal of modeling the
syntax of natural language.

For example, the language ab+ is a regular language generated by the
following regular grammar: S→ aB, B→ b, B→ bB.

Automata are recognizer devices that are able to decide whether or not
an input string belongs to a specified language. The five basic families of
languages in the Chomsky Hierarchy are also characterized by recognizing
automata. These automata are: the finite automaton, the one-turn pushdown
automaton, the pushdown automaton, the linearly bounded automaton, and
the Turing machine, respectively.
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An Introduction to Grammatical Inference for Linguists 5

Fig. 1. The Chomsky Hierarchy

A finite automaton consists of a finite set of states, a finite alphabet of
input symbols, and a set of transition rules. If the next state is always
uniquely determined by the current state and the current input symbol,
we say that the automaton is deterministic. Formally, a deterministic finite
automata (DFA) is defined as a 5-tuple (Σ, Q, δ, q0, F) where: Σ is the alpha-
bet, Q is a finite set of states, T is the transition function (T : Q x Σ → Q,
that is, from one state and reading a given symbol from the alphabet, we go
to another state), q0 is the initial state, and F the set of final states (F ⊆ q).
A DFA takes a string as an input, and for each input symbol go to a state
by following the transition function. When the last symbol is processed, de-
pending on whether the DFA is in an accepting state or not, the string is
accepted or rejected. A DFA characterizes the family of languages REG. See
Figure 2 for an example of a DFA; initial state is marked with the symbol >
and the final (or accepted) state is marked with a double circle.

3 Formal models in Grammatical Inference

In this section we present two of the most important formal models devel-
oped within the field of GI. We also discuss some linguistics aspects of these
models.

TRIANGLE 1 • September 2010



6 Leonor Becerra-Bonache

Fig. 2. Example of a Deterministic Finite Automata (DFA). This DFA recognizes the
language ab+.

3.1 Gold: Identification in the limit

In 1967, Gold [21] introduced the model of identification in the limit. His final
goal was to explain the acquisition of natural languages.

The study of language identification described here derives its motiva-
tion from artificial intelligence. The results and the methods used also have
implications in computational linguistics, in particular the construction of
discovery procedures, and in psycholinguistics, in particular the study of
child learning (...).
I wish to construct a precise model for the intuitive notion “able to speak
a language" in order to be able to investigate theoretically how it can be
achieved artificially. Since we cannot explicitly write down the rules of En-
glish which we require one to know before we say he can “speak English",
an artificial intelligence which is designed to speak English will have to
learn its rules from implicit information. That is, its information will con-
sist of examples of the use of English and/or of an informant who can state
whether a given usage satisfies certain rules of English, but cannot state
these rules explicitly. [21, pp. 447–448].

Identification in the limit views learning as an infinite process. In this
model, the learner passively receives more and more examples, and has
to produce a hypothesis of the target language. If the learner receives new
examples that are not consistent with his hypothesis, he has to change it.
His hypothesis has to converge to a correct hypothesis. We say that the
learner identifies the target language in the limit if, after a finite number of
examples, he makes a correct guess and does not alter his guess thereafter.

It is worth noting that under this criterion, the learner cannot be certain
of having correctly guessed the target language, since he may receive new

TRIANGLE 1 • September 2010



An Introduction to Grammatical Inference for Linguists 7

examples that are not consistent with his hypothesis. Gold justifies the study
of identifiability in the limit in the following way:

My justification for studying identifiability in the limit is this: A person
does not know when he is speaking a language correctly; there is always the
possibility that he will find that his grammar contains an error. But we can
guarantee that a child will eventually learn a natural language, even if it
will not know when it is correct. [21, p. 450].

Gold studied two different learning settings: i) Learning from text: the
learner only receives positive data (strings that belong to the language); ii)
Learning from informant: the learner receives positive and negative data (i.e.,
strings that belong to the language and strings that do not).

Gold proved that superfinite classes of languages (a class is superfinite if
it contains all finite languages and at least one infinite language) cannot be
identified in the limit from only positive data. This implies that none of the
classes of languages defined by Chomsky to model natural language syntax
is identifiable in the limit from only positive data. Therefore, the following
question arises: How do children overcome this theoretical hurdle? Gold
suggested the following hypothesis:

If one accepts identification in the limit as a model of learnability, then
this conflict must lead to at least one of the following conclusions:
1. The class of possible natural languages is much smaller than one would

expect from our present models of syntax. That is, even if English is
context-sensitive, it is not true that any context-sensitive language can
occur naturally. Equivalently, we may say that the child starts out with
more information than that the language it will be presented is context-
sensitive. In particular, the results on learnability from text imply the
following: The class of possible natural languages, if it contains lan-
guages of infinite cardinality, cannot contain all languages of finite
cardinality.

2. The child receives negative instances by being corrected in a way we do
not recognize. If we can assume that the child receives both positive and
negative instances, then it is being presented information by an “infor-
mant". The class of primitive recursive languages, which includes the
class of context-sensitive languages, is identifiable in the limit from an
informant. The child may receive the equivalent of negative instances
for the purpose of grammar acquisition when it does not get the desired
response to an utterance. It is difficult to interpret the actual training
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8 Leonor Becerra-Bonache

program of a child in terms of the naive model of a language assumed
here.

3. There is an a priori restriction on the class of texts which can occur,
such as a restriction on the order of text presentation. The child may
learn that a certain string is not acceptable by the fact that it never
occurs in a certain context. This would constitute a negative instance.
[21, p. 453–454].

Studies along these lines have shown that the first path (the class of po-
tential natural language is more restrictive than those defined by Chomsky)
can be successful (see, [1, 25, 31]). In linguistics, it is also generally assumed
that the first conclusion holds.

Now it seems evident to many linguists (notably, Chomsky [40,43])
that children are not genetically prepared to acquire any arbitrary language
on the basis of the kind of casual linguistic exposure typically afforded the
young. Instead, a relatively small class H of languages may be singled out
as “humanly possible" on the basis of their amenability to acquisition by
children, and it falls to the science of linguistics to propose a nontrivial
description of H [23, p.29].

3.2 Angluin: Query Learning

D. Angluin introduced the query learning model in [2]. In this model, the
learner is allowed to make queries to the teacher. The teacher (or oracle)
knows the target language and answers the queries made by the learner
correctly (he is perfect).

The learner (or learning algorithm) can only make queries from a given
set. After asking a finite number of questions, the learner must return a
hypothesis. The learner’s hypothesis has to be the correct one (that is why
this kind of learning is also known as exact learning).

There are different kinds of queries available to the learner, but just two
of them have established themselves as the standard combination to be used:

• Membership queries (MQs): the learner asks if a string w is in the language,
and the teacher answers “yes” if w belongs to the target language, and
“no” otherwise.

• Equivalence queries (EQs): the learner asks if his hypothesis H is correct,
and the teacher answers “yes” if H is equivalent to the target language
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An Introduction to Grammatical Inference for Linguists 9

L and “no” otherwise. If the answer is “no”, a counterexample x is re-
turned (i.e., a string in the symmetric difference of H and L).

A teacher that can answer MQs and EQs is called a MAT teacher (min-
imally adequate teacher). In [2], Angluin gave an algorithm known as L∗,
which learns DFA from MAT. She proved that is possible to learn DFA from
MQs and EQs in polynomial time, and it was conjectured that richer classes
than DFA cannot be inferred through a polynomial use of MAT. Since then,
the L∗ algorithm has become the main reference and one of the most rel-
evant results in the framework of learning from queries. Below we briefly
review the learning algorithm L∗. Details can be found in [2].

The L∗ algorithm

The general idea of the algorithm is to repeat the following loop until the
answer to an EQ is “yes”:

• Find a closed and consistent observation table (representing a DFA) by
means of MQs

• Ask an EQ
• If the answer is “no” (it is not the correct acceptor), then use the coun-

terexample to update the table

What is an observation table? The information during the learning pro-
cess is organized in a table called observation table. An observation table is a
two-dimensional table, with both rows and columns indexed by strings (for
example, see Figure 3).

We can differentiate three main parts in an observation table:

- S: a prefix-closed set of strings. Rows labeled by elements of S are the
candidates for states of the automaton being constructed.

- T: in this part of the table we find rows labeled by elements of S · Σ (i.e.,
elements of S concatenated with all the symbols of the alphabet). These
rows are used to construct the transition function.

- E: a suffix-closed set of strings. Columns labeled by elements of E corre-
spond to distinguishing experiments for these states.

The observation table will be denoted (S, E, T). By concatenating the
string of a row r with the string of a column c we get a string rc. If the string
rc is in the language, the corresponding cell contains a 1, and 0 otherwise.
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10 Leonor Becerra-Bonache

Fig. 3. Observation table. Σ = {a, b}

An observation table is called closed if any row of S · Σ corresponds with
some row in S. An observation table is called consistent if every equivalent
pair of rows in S remains equivalent after appending any symbol. When we
have a closed and consistent table we can build the corresponding DFA and
make an EQ.

How do we build a DFA? The L∗ algorithm uses the observation table
to build one. We define a corresponding automaton A(S, E, T) over the al-
phabet Σ, with state set Q, initial state q0, accepting states F, and transition
function δ as follows:

• Q = {row(s)|s ∈ S}
• q0 = row(λ)
• F = {row(s)|s ∈ S and T(s) = 1}
• δ(row(s), a) = row(s · a)

For example, as the reader can easily verify, the observation table de-
picted in Figure 3 is closed and consistent. So, we can construct a DFA from
this table. There are only two candidates for states: the row labeled λ and
the row labeled a. The first contains 10 and the second 00; these values can
be considered as a codification of the state. Therefore, we can call q0 all the
rows that have the value 10, and q1 all the rows with the value 00. Now, by
using the other rows, we know that: from q0, by reading the symbol a, we
go to state q1 (value of the row labelled a), and by reading the symbol b, we
go to state q0 (value of the row labelled b); from q1, by reading the symbol
a we go to state q1 (value of the row labelled aa), and by reading b we go to
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An Introduction to Grammatical Inference for Linguists 11

state q0 (value of the row labelled ab). Moreover, q0 is both initial and final
state. In this way, we can construct the corresponding automaton, which is
depicted in Figure 4.

Fig. 4. Automaton corresponding to the observation table depicted in Figure 3

After making the EQ, if the conjectured DFA is the correct one, we will
get a positive answer from the teacher. Then, the algorithm halts. If the
conjectures DFA is not the correct one, we will get a counterexample. In
such a case, we have to: i) Add the counterexample and all its prefixes to
S; ii) Update the table using MQs for missing elements. We shall explain all
these steps in greater detail using an example.

Running example

Let the alphabet Σ = {0, 1}, and a language L = (0 + 110)+. The minimal
automaton associated with the mentioned language is shown in Figure 5.

Initially the learner starts with the following observation table described
as Table 1.

This table is not closed because row(0) does not belong to rows(S). L∗

chooses to add the string 0 to S, 00 and 01 to SΣ− S, and then queries 00
and 01 to construct the observation table T2 shown in Table 2.
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Fig. 5. Minimal automaton associated to the language L1 = (0 + 110)+

Table 1. S = {λ}, E = {λ}

T1 λ

λ 0
0 1
1 0

Table 2. S = {λ, 0}, E = {λ}

T2 λ

λ 0
0 1
1 0
00 1
01 0

This observation table is closed and consistent, so L∗ makes a conjecture
of the automaton A1, shown in Figure 6.

A1 is not a correct automaton for L, so the teacher selects a counterex-
ample. In this case we assume that the counterexample 10 is returned (it is
not in L but accepted by A1).

To process the counterexample 10, L∗ adds the strings 1 and 10 to S (the
string λ is already in S), and queries the strings 11, 100 and 101 to construct
the observation table T3 shown in Table 3.
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Fig. 6. Associated automaton: A1

Table 3. S = {λ, 0, 1, 10}, E = {λ}

T3 λ

λ 0
0 1
1 0
10 0
00 1
01 0
11 0
100 0
101 0

This observation table is closed, but not consistent since row(λ) = row(1)
but row(0) 6= row(10). Thus L∗ adds the string 0 to E, and queries the strings
required to construct the observation table T4 shown in Table 4.

Table 4. S = {λ, 0, 1, 10}, E = {λ, 0}

T4 λ 0
λ 0 1
0 1 1
1 0 0
10 0 0
00 1 1
01 0 0
11 0 1
100 0 0
101 0 0
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This observation table is closed, but not consistent since row(1) =
row(10) but row(11) 6= row(101). Thus L∗ adds the string 10 to E, and
queries the strings required to construct the observation table T5 shown in
Table 5.

Table 5. S = {λ, 0, 1, 10}, E = {λ, 0, 10}

T5 λ 0 10
λ 0 1 0
0 1 1 0
1 0 0 1
10 0 0 0
00 1 1 0
01 0 0 1
11 0 1 0
100 0 0 0
101 0 0 0

This observation table is closed and consistent, so L∗ conjectures the
automaton A2 shown in Figure 7.

A2 is not a correct acceptor for L, so the teacher answers the conjecture
with a counterexample. We assume that the counterexample supplied is
11110, which is not in L but is accepted by A2.

L∗ adds the counterexample and all its prefixes to S and constructs the
observation table T6 shown in Table 6.

This table is found to be closed but not consistent, since row(λ) =
row(11) but row(1) 6= row(111).

Thus L∗ adds the string 110 to E and queries the necessary strings to
construct the observation table T7 shown in Table 7.

This table is closed and consistent. The automaton conjectured by L∗

now corresponds to the correct acceptor for the language L, so the Teacher
replies to this conjecture with yes and L∗ terminates with this automaton as
its output.

The total number of queries during this run of L∗ is 3 EQs (the last one
was successful) and 44 MQs.
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Fig. 7. Associated automaton: A2

Table 6.
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ, 0, 10}

T6 λ 0 10
λ 0 1 0
0 1 1 0
1 0 0 1
10 0 0 0
11 0 1 0
111 0 0 0
1111 0 0 0
11110 0 0 0
00 1 1 0
01 0 0 1
100 0 0 0
101 0 0 0
110 1 1 0
1110 0 0 0
11111 0 0 0
111100 0 0 0
111101 0 0 0

Table 7.
S = {λ, 0, 1, 10, 11, 111, 1111, 11110},
E = {λ, 0, 10, 110}

T7 λ 0 10 110
λ 0 1 0 1
0 1 1 0 1
1 0 0 1 0
10 0 0 0 0
11 0 1 0 0
111 0 0 0 0
1111 0 0 0 0
11110 0 0 0 0
00 1 1 0 1
01 0 0 1 0
100 0 0 0 0
101 0 0 0 0
110 1 1 0 1
1110 0 0 0 0
11111 0 0 0 0
111100 0 0 0 0
111101 0 0 0 0

3.3 Linguistic discussion of these models

The formal models presented in the previous section are based on differ-
ent learning settings (i.e., the type of data used in the learning process and
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the way in which these data are provided to the learner is different in both
cases) and different criteria for a successful inference (i.e., the conditions un-
der which we say that a learner has been successful in the language learning
task are different). But, which one is better for modeling natural language
acquisition? Below we review some of the accepted and controversial as-
pects of these models.

We can find some similarities between learning in Gold’s model and
first language acquisition. In both cases there is a process of improvement:
in identification in the limit model, the new conjecture is better than the
previous guess; in the case of first language acquisition there is a progres-
sive improvement of the language acquired by the child. However, there are
some aspects of Gold’s model that are controversial from a linguistic point
of view. For example:

• In the limit denotes the criterion of success, which assumes that there is
no limit on how long it can take the learner to guess the correct lan-
guage. Hence, considerations of efficiency form a somewhat separate
line of analysis from Gold’s work, which was concerned with limiting
behavior rather than speed of learning. However, from the natural lan-
guage acquisition point of view efficiency is also important. Although
learning a natural language is an infinite process, we are able to learn
the language in an efficient way.

• The learner passively receives strings of the language. However, we
know that natural language learning is more than that: children also
interact with their environment.

• The current hypothesis has to be consistent with all the examples seen
so far. Moreover, the learner hypothesizes complete grammars instanta-
neously. From a linguistic point of view these assumptions are unrealis-
tic (e.g., children are unlikely to remember the entire record of sentences
ever addressed to them).

Therefore, the definition of identification in the limit postulates greatly
idealized conditions, as compared to the conditions under which children
learn language.

Angluin’s model addresses an important tool available to a child, i.e.,
queries to a teacher (usually, a family adult member). Therefore, the query
learning model might be useful when representing several aspects of the
process of children’s language acquisition. However, this model also has
some controversial aspects from a linguistic point of view:
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• The type of queries introduced with this model are quite un-natural
for real learning environments. For example, an equivalency query will
never be produced in a real situation; a child will never ask an adult if
his grammar is correct.

• The learner does not really interact with the teacher; he can ask MQs or
EQs, but he does not really communicate with the teacher by producing
sentences, etc. In the communication between children and adults we
can see that the role of the children is more active, and not limited to
asking this kind of queries.

• Angluin’s model is known as exact learning. However, from a linguistic
point of view, everybody has (small) imperfections in their linguistic
competence.

• The teacher in this model is assumed to know everything and always
gives the correct answers. Therefore, he is an ideal teacher, which does
not correspond with a real situation.

The third model studied in GI is called the PAC learning model (prob-
ably approximately correct), which was introduced by Valiant in [35]. It is
a probabilistic model of learning from random examples; the distribution
over the examples is unknown, and the examples are sampled under this
distribution. The learner is required to be able to learn from this sample
and under any probability distribution, but exactitude is not required (a
small error is permitted since one may be unlucky during the sampling
processes). Taking into account that exact learning is too hard in a real con-
text, approximate learning could be a good way of dealing with children’s
language acquisition. However, the requirement that the examples have the
same distribution throughout the process is too strong for practical situa-
tions.

As we have seen, all these models have aspects that make them suitable
for studying natural language acquisition to a certain extent, but other as-
pects of the models make them unsuitable for this task. Therefore, we can
conclude that none of these models perfectly accounts for natural language
acquisition.

4 Towards a new formal model of language learning

As we have pointed out, the study and development of formal models of
language learning is of great interest if we are to better understand the pro-
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cess of natural language acquisition. In the section above we have seen that
the models that have been proposed so far in GI have many controversial
aspects from a linguistic point of view. Part of the reason is because GI stud-
ies have been specially focused on obtaining formal results, and they have
been more interested in the mathematical aspects of the models than in their
linguistic relevance.

Therefore, it would be interesting to develop new formal models of lan-
guage learning that take greater account of studies of natural language ac-
quisition (in this way, we could avoid some of the controversial aspects of
the models proposed so far). In order to do this, it is important to address
two questions: what classes of formal languages are interesting from a lin-
guistic point of view?; what source of data should we provide our learning
algorithm with? We try to answer these questions below.

4.1 What class of formal languages?

The theory of formal languages arose born in the second half of the 20th
century as a tool to describe natural language syntax. As we have pointed
out, the goal of GI studies is to learn formal languages from data. Most
research into GI has focused on learning two classes of formal languages:
regular and context-free languages (two of the classes with least generative
power in the Chomsky hierarchy). However, what class of formal languages
is more interesting from a linguistic point of view?

In order to answer this question, first, we need to answer the following
question: Where are natural languages located in the Chomsky hierarchy?
This question has been a subject of debate for a long time. This debate was
focused on trying to determine whether natural languages are CF or not.
In the late 80s, examples of structures that are not CF were discovered in
several natural languages. Here are some examples of such constructions:

• Dutch: Bresnan et al. studied cross-serial dependencies in Dutch, argu-
ing against the context-freeness of natural language.

While Dutch may or may not be CF in the weak sense, it is not
strongly CF: there is no CFG that can assign the correct structural de-
scriptions to Dutch cross-serial dependency constructions. [13, p. 314]

The following example shows a duplication-like structure {ww̄ | w ∈
{a, b}∗}, where w̄ is the word obtained from w by replacing each letter
with its barred copy.
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...dat Jan Piet Marie de Kinderen zag helpen laten zwemmen
(That Jan saw Piet help Marie make the children swim)

This is only weakly non-context-free, i.e., only in the deep structure.

• Bambara: Bambara, an African language of the Mande family, was stud-
ied by Culy in [19]. He provided another argument against context-
freeness based on the morphology of words in that language.

In this paper I look at the possibility of considering the vocabulary of
a natural language as a sort of language itself. In particular, I study the
weak generative capacity of the vocabulary of Bambara, and show that
the vocabulary is not context-free. This result has important ramifica-
tions for the theory of syntax of natural language. [19, p. 349].

A duplication structure is found in the vocabulary of Bambara, demon-
strating a strong non-context-freeness, i.e., on the surface and in the deep
structure:

malonyininafilèla o malonyininafilèla o
(one who searches for rice watchers + one who searches for

rice watchers = whoever searches for rice watchers)

This has the structure {wcw | w ∈ {a, b}∗}. But also the crossed agreement
structure {anbmcndm | m, n>0 } can be inferred.

• Swiss German: The paper by Shieber [32], offers evidence for the non-
context-freeness of natural language. He collected data from native Swiss
German speakers, and provided a formal proof of the non-context-
freeness of Swiss German.

Using a particular construction of Swiss German, the cross-serial
subordinate clause, we have presented an argument providing evidence
that natural languages can indeed cross the context-free barrier. The lin-
guistic assumptions on which our proof rests are small in number and
quite weak; most of the proof is purely formal. In fact, the argument
would still hold even if Swiss German were significantly different from
the way it actually is, i.e., allowing many more constituent orders, cases
and constructions, and even if the meanings of the sentences were com-
pletely different. [32, p. 330].
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The following example is a strong non-context-free structure, again
showing crossed agreement:

Jan säit das mer (d’chind)m (em Hans)n es huus haend wele (laa)m

(hälfe)n aastriiche
(Jan said that we wanted to let the children help Hans paint

the house)

This has the structure xwambnycmdnz, where a, b stand for accusative, da-
tive noun phrases, respectively, and c, d for the corresponding accusative,
dative verb phrases, respectively.

So, all these studies provide a negative answer to the question of whether
natural languages are CF or not. Moreover, they suggest that natural lan-
guages can only be described by a generative capacity that is greater than
context-free grammar. But, how much power is needed to describe these
non-CF constructions?

In 1985, Joshi [24] introduced the notion of the Mildly Context-Sensitive
family of languages. The general idea was to provide a device that was able
to generate CF and non-CF structures, but keep the generative power un-
der control. There are very well known mechanisms for fabricating MCS
families: for example, tree adjoining grammars, head grammars, combina-
tory categorial grammars. In the Chomsky hierarchy thay are somewhere
between CF and CS. However, is it necessary for such formalisms to gener-
ate all CF languages? We can find natural language constructions that are
neither REG nor CF, and also some REG or CF constructions that do not ap-
pear naturally in sentences. Therefore, as some authors point out [7, 26, 27],
natural languages could occupy an orthogonal position in the Chomsky hi-
erarchy.

So, it would be desirable to find new formalisms that have the following
two properties: i) They are able to generate Mildly Context-sensitive lan-
guages (i.e., they generate multiple agreement, crossed agreement and du-
plication structures, and they are computational feasible); ii) They occupy
an orthogonal position in the Chomsky hierarchy (i.e., thay contain some
REG, some CF, and so on).

4.2 What source of data?

The learning paradigms that have most been studied in GI are: learning
from positive data (most of them), and learning from queries. However, if
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we want to correctly simulate natural language learning, we should provide
our learning algorithm with the same kind of examples that are available to
a child. But one of the questions that is still a subject of debate in Linguistics
is precisely this: what source of data is available to children during the
learning process?

It is widely accepted that children receive positive data; that is, sentences
that are grammatically correct. However, the availability of another kind of
data (called negative data) is still a matter of substantial controversy. Do
children receive negative data and use them during the learning process?

There have been three main responses to this question. The first proposal
is that children do not receive negative data and they must rely on innate
information to acquire their native language. This proposal is based on the
poverty of stimulus argument: there are principles of grammar that cannot be
learnt from only positive data, and since children do not receive negative
data (i.e., evidence about what is not grammatical), one can conclude that
the innate linguistic capacity is what provides the additional knowledge that
is necessary for language learning. Further justification for innateness was
drawn from Gold’s negative result on learning from positive data. Moreover,
Brown and Hanlon [14] analyzed adult approval and disapproval of child
utterances (for example, adult’s answers such as“That’s right”, “Correct”,
“That’s wrong”, “No”). They found no relation between this type of answer
and the grammaticality of the sentences produced by the children, and this
was also taken to show that children do not receive negative data. However,
it is worth noting that parents do not usually address their children in this
way. Should only explicit disapproval count as negative evidence? Do adults
correct children in a different way?

The second proposal is that children receive negative data in the form of
different reply-types given in response to grammatical versus ungrammatical
child utterances. Hirsh-Pasek et al. [22], Demetras et al. [20], and Morgan
and Travis [29] proposed that parents respond to ungrammatical child ut-
terances by using different types of answers from those they use when re-
sponding to grammatical utterances. Under this view, the reply type would
indicate to the child whether an utterance was grammatically correct or not.
For example, if parents tend to respond with an expansion when the child’s
utterance is incorrect, but repeat the sentences that are grammatically cor-
rect, then adult use of an expansion would signal that the child’s utterance
was incorrect. However, Marcus [28] analyzed all these studies and con-
cluded that there is no evidence that this kind of data is necessary to learn a
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language or even that they exist. Even if they exist, a child would learn what
utterances are correct only after complex statistical comparisons. Therefore,
these results were also used to show that internal mechanisms are necessary
to explain how children get rid of errors to acquire their native language.

The third proposal is that children receive negative evidence in the form
of reformulations, and not only do they detect them, they also make use of the
information. Chouinard and Clark [15] proposed this new view of negative
evidence. They consider that the reply-types proposal does not take into
account if the adult’s answer contains corrective information (then, answers
that are corrective are grouped with those that are not). Therefore, if only
the reply-type is taken into account, it could be difficult to identify the error
made. On the basis of Clark’s theory of contrast [17, 18], Chouinard and
Clark proposed adult reformulations as negative evidence. They consider
that it is in the to-and-fro of conversation that children receive information
about whether their utterances are appropriate for their intended meanings.
For example (extracted from CHILDES database, Kuczaj):

Abe: milk milk
Father: you want milk?
Abe: uh-huh
Father: Ok. Just a second and I’ll get you some.

In this conversation, Abe is about two years and a half. She produces an
incorrect sentence and, immediately after, the father reformulates her sen-
tence by checking on what the child had intended to say. After that, the
child acknowledges the reformulation. Therefore, as we can see: i) Adult
correction preserves the same meaning of the child; ii) Adult uses the cor-
rection to keep the conversation on track (adult reformulates the sentence
just to make sure that he has understood the child’s intentions); iii) Child
utterance and adult correction have the same meaning, but different form.
Chouinard and Clark analyzed longitudinal data from five children between
two and four years old, and they showed that adults reformulate erroneous
child utterances often enough to help learning. Moreover, they showed that
children not only detect differences between their own utterance and the
adult reformulation, they also make use of the information.

Do corrections give positive or negative information? As we can see,
these types of corrections contain positive and negative information at the
same time. On the one hand, corrections are positive data, since a correction
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is a sentence that is grammatically correct. On the other hand, they also give
us negative information; as Chouinard and Clark pointed out:

Since, like adults, children attend to contrast in form, any change in
form that does not mark a distinct, different, meaning will signal to children
that they may have produced something that is not acceptable in the target
language. And this fits the classic definition of negative evidence [15, p.
666]

It is worth noting that during the first stages of children’s language ac-
quisition, children receive corrections that preserve the meaning of what
they intend to convey. However, this kind of information has not been taken
into account in formal models of language learning. Why should it not be
taken into account? What is the effect of corrections on the process of lan-
guage learning? A model that takes corrections into account could allow us
to answer this question.

5 New proposals

As we have seen, REG and CF languages have a limited expressive power
to describe some aspects of the syntax of natural languages. Moreover, cor-
rections could play an important role during the process of language acqui-
sition. Taking into account all these ideas, we shall briefly review two new
lines of research that have been proposed in the last four years.

5.1 Learning Simple External Contextual Languages

We have pointed out in the section above that it would be desirable to have
a mechanism that can generate MCS languages and occupy an orthogonal
position in the Chomsky hierarchy. Becerra-Bonache [7] proposed and stud-
ied a non-classical mechanism that has these interesting properties: Simple
External Contextual grammars (SEC).

A SEC produces a language starting from a string called base, and itera-
tively adding contexts (i.e., pair of strings) at the ends of the current string.
Formally, a SEC grammar is defined as G = (Σ, B, C), where:

• Σ: alphabet.
• B: one p-word (i.e., a p-dimensional vector whose components are

words/ strings) over Σ, called the base of the grammar.
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• C: a finite set of p-contexts (i.e., a p-dimensional vector whose compo-
nents are contexts) over Σ, called the set of contexts of G.

Here is an example. Let us assume we have a SEC grammar with 2 di-
mensions, where: Σ = {a, b, c}, B = {(λ, λ)}, and C = { c1 = [(a, b), (c, λ)]}.
Starting from the base (λ, λ), if we apply the context once we obtain the
2-word (aλb, cλλ) = (ab, c) = abc. Now, starting from (ab, c), if we again
apply the context we obtain (aaλbb, ccλλλ) = (aabb, cc) = aabbcc. Note that
by using this grammar, we can generate the following non-CF language:
L = {anbncn | n ≥ 0}. The generation process is depicted in Figure 8.

Fig. 8. Derivation process of the SEC grammar G = (Σ = {a, b, c}, B = {(λ, λ)}, and
C = { c1 = [(a, b), (c, λ)]})

Becerra-Bonache [7] proved that SEC can generate MCS languages and
occupies an orthogonal position in the Chomsky hierarchy (see Figure 9).
Moreover, the learnability of SEC from positive data has been studied in
[8, 12, 30].

5.2 Learning from Positive Data and Corrections

As we have seen in the section above, studies on children’s language ac-
quisition show that corrections are available to children. Although the main
source of information received during the process of natural language ac-
quisition is positive data, corrections could play a complementary role in the
process. Therefore, it is of great interest to study the effects of corrections
on language learning.

Taking all this into account, Becerra-Bonache [7] tried to apply the idea of
corrections to GI studies, and more concretely to the query learning model

TRIANGLE 1 • September 2010



An Introduction to Grammatical Inference for Linguists 25

Fig. 9. Location of SEC in the Chomsky hierarchy; it is incomparable with REG and
CF, but included in CS.

introduced by D. Angluin. In this way, Becerra-Bonache presented a new
type of query called correction query (CQ); when a string is submitted to the
oracle, either he validates it if it belongs to the target language, or he pro-
poses a correction. The learnability of different classes of languages using
CQs has been studied in [6, 9–11]. The results obtained so far show that the
concept of CQ generates new challenging results in the field of GI.

The kinds of correction considered in the papers cited above are mainly
syntactic corrections based on proximity between strings. However, in natu-
ral situations, a child’s erroneous utterance is corrected by parents on the
basis of the meaning that the child intends to express (i.e., the correction
preserves the intended meaning of the child’s utterance). In [3–5], Angluin
and Becerra-Bonache proposed a new computational model that gives an
account of this kind of correction. The model takes into account the con-
text, semantics, positive data and corrections. It includes two different tasks:
comprehension and production.

It is worth noting that the model proposed by Angluin and Becerra-
Bonache is mainly inspired by studies on children’s language acquisition.
In this new approach, the teacher is able to understand a flawed utterance
provided by the learner and respond with a correct utterance for that mean-
ing (by using meaning-preserving corrections). Moreover, the learner can
recognize that the teacher’s utterance has the same meaning but a different
form. This model has allowed them to investigate aspects of the roles of se-
mantics and corrections in the process of learning to understand and speak
a natural language. The model has been tested with limited sublanguages
of several natural languages, and the results show that access to semantics
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facilitates language learning, and that the presence of corrections by the
teacher has an effect on language learning by the learner (even if the learner
does not give corrections any special treatment).

6 Final Remarks

Research in formal models of language acquisition is of great importance
in understanding how children acquire their native language. Moreover, the
simulation of this human capability could have important implications in
the field of human language technologies; for example, if computers are able
to learn a language like a human, the user could interact with a computer
in a more natural way (without any special skill or training).

GI provides a good theoretical framework in which to develop such
models. However, the models that have been proposed so far in this field,
do not take into account important aspects of natural language acquisition,
and, hence, do not give a good account of the process.

In this paper we have pointed out some of the weak points of these mod-
els, and we have proposed some new ideas (based on studies of children’s
language acquisition) that could be taken into account in new formal mod-
els of language learning. On the one hand, we consider that studies in GI
should focus on classes of languages that have more important linguistic
properties; that is, classes of languages that are mildly context-sensitive and
occupy an orthogonal position in the Chomsky hierarchy (like natural lan-
guages are believed to have). An example of a class with such properties is
the Simple External Contextual. On the other hand, we have seen that cor-
rections can also play an important role in the process of natural language
acquisition so it is also of interest to take into account this source of in-
formation in formal models of language learning. Studies along these lines
show the challenging results that can be obtained when this idea is taken
into account.

Therefore, with this paper we have intended to show that studying nat-
ural language acquisition from an interdisciplinary point of view can be of
interest. Ideas and techniques from such different research areas as linguis-
tics, cognitive science and computer science, could definitely help to find an
answer to the question of how children acquire their native language.
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Introduction

This article gives a short introduction on how to get started with logic pro-
gramming in Prolog that does not require any previous programming expe-
rience. The presentation is aimed at students of linguistics, but it does not
go deeper into linguistics than any student who has some ideas of what a
computer is, can follow the text. I cannot, of course, cover all aspects of logic
programming in this text, and so we give references to other sources with
more details.

Students of linguistics must have a very good motivation to spend time
on programming, and I show here how logic programming can be used for
modelling different linguistic phenomena. When modelling language in this
way, as opposed to using only paper and pencil, your models go live: you
can run and test your models and you can use them as automatic language
analyzers. This way you will get a better understanding of the dynamics
of languages, and you can check whether you model expresses what you
intend.
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Based on Prolog, I also introduce Definite Clause Grammars which is in-
tegrated in most Prolog systems: You can write a grammar in a straightfor-
ward notation, perhaps include different syntactic, semantic and pragmatic
features – and with no additional effort, you can use it as an automatic
language analyzer.

I show also another important extension to Prolog, called Constraint
Handling Rules, which boosts these grammars with capabilities for captur-
ing semantics and pragmatics by abductive reasoning, in a way that I claim
is considerably simpler than mainstream formalisms; this part is to a large
extent based on my own research.

Hardcore linguists may object that these approaches are too simplistic –
and they are right (of course, they are always right ;-) – but this simplicity,
I will reply, provides exposure to linguistic phenomena in a clarified and
distilled form which is difficult to obtain by other means.

Finally I apologize for any errors, omissions, misspellings and mistakes,
which I’m sure there are plenty of, as this article has been produced in a
very short time. I am glad to receive any comments and questions.

All example programs can be downloaded from the following website:
http://www.ruc.dk/∼henning/LP-for-Linguists.
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1 Prolog: Programming without programming

Prolog is one of the easiest programming languages to use for a beginner
in programming: You only need to learn a few simple basic structures, and
you can start on your own. Programs are given as plain text files which you
can edit with any plain text editor.

1.1 Prolog, lesson 1: A program as a knowledge base of facts

The following is our first Prolog program; we will assume that it is kept in
a file named royal.1

% Danish Royal Family

parent( margrethe, frederik).

parent( margrethe, joachim).

parent( henrik, frederik).

parent( henrik, joachim).

parent( mary, christian).

parent( mary, isabella).

parent( frederik, christian).

parent( frederik, isabella).

parent( alexandra, nicolai).

parent( alexandra, felix).

parent( joachim, nicolai).

parent( joachim, felix).

parent( marie, little_henrik).

parent( joachim, little_henrik).

The very first character in the program “%” indicates that the rest of that
line is a comment. The rest of this program consists of facts, in this example
listing the parental relationships for a part of the Danish royal family. The
meaning of the program is not that the program should be executed from
beginning to end, one instruction at a time, but it is to be understood as a
knowledge base.

1 In some operation systems, it will best to give the file name an extension, e.g.
royal.txt. The extension “.pl” is also common, but this makes many systems
believe that the file is a Perl program, which is something completely different.
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I suppose this meaning becomes clear to you, simply by looking at the
program. You will also observe that these facts are written in a fixed for-
mat; here parent is called a predicate, and the names that appear, such as
margrethe, are examples of constant symbols or, for short, constants.2 It is
important to notice that each fact must be ended with a period “.”.

We can run a program by asking queries. A query is a sort of question
that the Prolog system tries to answer as good as it can. We will try some ex-
amples. The following shows a dialogue with a computer that has a version
of Prolog installed; we assume that it is started by the command prolog, but
this may vary; before you start, be sure to be in the directory that contains
the program file royal. The following is a listing of the command window
after a dialogue between a user and the Prolog system.

$ prolog

................

| ?- [royal].

% compiling directory/royal...

yes

| ?- parent(margrethe, frederik).

yes

| ?- parent(margrethe, obama).

no

| ?- parent(margrethe, juan_carlos).

no

| ?- parent(margrethe, X).

X = frederik ? ;

X = joachim ? ;

no

| ?- parent(X,felix).

X = alexandra ? ;

X = joachim ? ;

no

| ?- halt.

$

2 Some books and manuals also use the term, an atom, which is a bit misleading
since an atom is something different in the mathematical logic on which Prolog
is based.

TRIANGLE 1 • September 2010



Logic Programming for Linguistics 35

You cannot see who (user or computer) wrote which part of the text, but I
will explain. The $ sign is the prompt from the computer’s operating system,
and the user starts Prolog by typing the command prolog. Where you see
“................”, you will typically get a message saying which Prolog
system and version you are using, but this is not interesting. The symbols
“| ?-” are printed by the system, meaning that it expects input from the
user. Our nice user first loads the program by writing “ [royal].”;3 this is
the general syntax for loading in programs; notice the terminating period,
and that is the same for any query that you type following “| ?-”, and you
should also type end-of-line at the end. Now the system gives a response,
saying that it has accepted the program. which is now ready in its memory.

Now we can start asking queries, and assume that our nice user types
“parent(margrethe, frederik)”. When typed in like this, you should un-
derstand this as a question “Is it true that ...”; here the system answers “yes”,
which means that it has found out that, this is indeed true according to the
program.4 In this case, it is easy for us to check that Prolog was right since
the query matches a fact in the program. Let us try a more advanced query,
“parent(margrethe, juan_carlos)”. Here the system replies “no” mean-
ing that the query cannot be shown to be true according to the program; we
can easily check that this conclusion is correct.5

3 If your computer requires files with an extension as in “royal.txt” or
“royal.pl”, it often works to load the file without writing the extension, | ?-

[royal]. If that does not work, you may need to write the extension as well, e.g.,
| ?- ['royal.txt']. Notice when you do this that single quotes are essential,
otherwise Prolog gets confused by the period and emits a weird error messsage,

4 You may notice the dubious usage of “true” and “truth”; what I mean here is
not that something is true in the real world, but it is a logical consequence of the
program. In fact, the computer has no coupling between the constant margrethe
and a real living person, who happens to be Her Majesty, the Queen of Denmark.
This meaning is reserved for humans, based on our intuition and knowledge
about the world; if the program is wrong according to the real world, its answers
will of course be wrong. The other way round, whether or not the program is
correct, we can say that it defines a set of possible worlds, and something is stated
to be true by Prolog only when it is true in all those possible worlds. However,
this is too philosophical for us, so I shall leave it for now.

5 Notice that Prolog considers anything to be false, as indicated by “no”, that cannot
be shown to be correct by the program. This is also problematic as something
might be true in the real world even if it is not mentioned in the program. In
fact, it is difficult to imagine a program that contains all the knowledge about
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Now our nice user tries something really advanced, namely to use a
variable in the query “parent(margrethe, X).”; notice that variables are
indicated by initial capital letter whereas a constant starts with a small letter.
The meaning of such a query is a request for “which values of the variable
makes my query true”. So when our nice user queries “parent(margrethe,
X).”, it means that she wants to know which people that have margrethe

as a parent. As it appears, the systems tells the nice user that there are
two possibilities, namely X=frederik and X=joachim; also this time we can
compare with the program text, that this is indeed a sound conclusion.

You should be aware that after each answer, when Prolog states a ques-
tion mark “?” as shown, it should be understood as “do you want another
solution?”. Here our nice user needs to type a semicolon “;” if she wants to
confirm that she wants another solution; the final “no” should be taken as
“no more answers”. If the first answer is sufficient, simply type end-of-line
after the question mark.

The next query also uses a variable, but in a different position, namely
for asking who are the parents of felix. It is important to learn from
these example, that in Prolog, no specific positions of a predicate should
be thought of as specific for “input” and others specific for “output”; you
can use them as you please.

Finally, the query “halt.” is a command to Prolog that we want to stop
and return to the operating system.

1.2 Prolog, lesson 2: Using variables to combine information and writing
rules

As I wrote above, using a variable in a query was a suggestion for the system
to fill in constants, so that the query becomes true. In fact, we can use several
variables in a query and also, the same variable can appear several times.
Let us consider an example, and assume that our nice user is interested
to know, who the queen’s grandchildren are; obviously, this information is

the real world. So “false” in Prolog’s terms does not mean that it is really false,
but rather that the program does not contain information about it. So it might be
more correct to have the system state “I don't know” rather than “no”, but that
is too difficult to say; “no” is easier, and as soon as you know what a “no” means,
this should not be a problem. — I promised in the last footnote not to include any
more philosophical discussion, so this is definitely the very last footnote of this
kind.
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embedded in the program, but not in an explicit way. She now starts the
system again, loads the program, and tries the following query.

| ?- parent(margrethe,X), parent(X,Y).

This is asking for pairs of values of X and Y which makes the query true. In
other words, X should be a child of margrethe, and Y should be the child of
the aforementioned child, i.e., Y should be a grandchild of margrethe. Let
us see Prolog’s answers when our nice user types semicolons after each to
get more.

X = frederik,

Y = christian ? ;

X = frederik,

Y = isabella ? ;

X = joachim,

Y = nicolai ? ;

X = joachim,

Y = felix ? ;

X = joachim,

Y = little_henrik ? ;

no

It may be a bit difficult to read when you see everything at the same time,
but each answer is ended by the semicolon typed by the user. So for exam-
ple, isabella is a grandchild of margrethe because isabella has frederik
as a parent, and frederik has margrethe as a parent.

Our nice user may become a bit tired both from writing the complicated
expressions, each time having to get the Xs and Ys right, and from seeing
margrethe’s. There is a remedy in Prolog to this namely the possibility of
defining a rule as part of the program. Our nice user suggests this rule:

grandparent(X,Z):- parent(X, Y), parent(Y, Z).

She adds it to the program file and reads in the program file once again to
test it. She now types in the following query and a number of semicolons to
get the following answers.

| ?- grandparent(margrethe,X).

X = christian ? ;

X = isabella ? ;

X = nicolai ? ;
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X = felix ? ;

X = little_henrik ? ;

no

As it appears, this is exactly what she wants. The meaning of the rule
is straightforward: in order to evaluate grandparent(X,Z) for which the
program has no facts, evaluate instead parent(X, Y), parent(Y, Z)., and
return what was found for X and Z, thus saying nothing about the values of
Y as it is completely local to the body of the clause.

Notice that we used the variable names freely as we liked. When using
an X as the query, we do not have to consider whether the rule uses X for
some other purpose; and if we have several rules in the program, their dif-
ferent uses of X do not get mixed up. So when, in the example above, we
wrote margrethe in the query where the rule uses X, and we wrote also X

in the query where the rule uses Z, they do not get mixed up. The system is
clever enough to replace variables and values so everything works out the
right way.

This finishes Prolog lesson 1 and 2, which is the core of Prolog and with
which you can already write a lot of interesting programs.

1.3 Prolog, lesson 3: The rest of Prolog, with a focus on lists

Prolog includes a lot of other things, of which the most important are:

• a lot of standard built-in predicates so you do not need to write them
yourself every time; any comprehensive Prolog textbook or manual will
tell you about them,

• structures, so that we can use structural information in predicates, and
not only constants such as “margrethe”; a special kind of structures is
lists that I will show below as they are important for language process-
ing,

• some devices which makes it possible for you to affect the way Prolog is
searching in its knowledge base for rules and facts in order to answer the
queries; this can give essential speed-up to large programs but I ignore
all that in this article.

The following is an an example of a Prolog list.

[once, upon, a, time]
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It includes four constants, and as you see, I anticipate the use of lists to
represent text. Prolog gives us some notation to work with lists, as we show
in the following program.

first(H, [H | _]).

rest(R, [_ | R]).

Firstly, the underline character is used as a so-called anonymous vari-
able; it adds nothing conceptually new to what we have already seen and
is not restricted to lists. It can be used for a variable that we only use once
in a rule (so there is no reason to give it an explicit name (think!)), which
means that we do not care about its actual value. The vertical bar inside the
list brackets is a special notation for lists, and separates the first element
from the list of remaining elements. So for example, when [once, upon,

a, time] is matched with [A|B], it will lead to A=once and B=[upon, a,

time]. Here are some queries to the program above together with its an-
swers; the program is in a file called firstlast.

$ prolog

| ?- [firstlast].

% compiling directory/firstlast...

yes

| ?- first(F, [once, upon, a, time]).

F = once ?

yes

| ?- rest(R, [once, upon, a, time]).

R = [upon,a,time] ?

yes

| ?- halt.

$

I will not spend more time on this example, but instead show a linguistically
inspired example. I will later introduce a grammar notation which makes it
easier to write, but now our point is to illustrate the use of lists for language.
The following program (file sheeps) uses Prolog and its list notation to
define a grammar for sheeps’ utterances.

sheeptalk([]).

sheeptalk([M|Ms]):- sheepsound(M), sheeptalk(Ms).

sheepsound(mah).

sheepsound(meeeeeh).
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The first rule tells that sheep can keep quiet when necessary, [] is a no-
tation for the empty list. The second rule explains in a recursive way that
sheeptalk consists of sheepsounds. In practice this means that it will clip
off one atom at a time and check if it is a sheepsound, i.e., mah or meeeeeh.
The following shows it at work.

$ prolog

................

| ?- [sheeps].

% compiling directory/sheeps...

yes

| ?- sheeptalk([mah,mah,meeeeeh]).

yes

| ?- sheeptalk([mah,mah,mouuuuuuuuuuuuuuuh]).

no

| ?- halt.

$

This is the essence of language analysis in Prolog; notice that you can think
of such a program as a grammar, and that Prolog can automatically use it
as an analyzer. And with a bit of imagination, you may be able to see that
we can extend this with different predicates for nouns, verbs, adjectives,
etc., and that an elaborate set of rules can express how some natural sen-
tences may look like. However, in the next section, I will introduce a special
grammar notation that most Prolog systems can use.

1.4 More reading

There are several good books that introduce to and go in depth with Pro-
log; for computer science students, I have good experience of using Bratko’s
book [3], but the first half of the book is also fairly accessible to other peo-
ple. The online, and now also paperback, book [2] may be easier to access
for linguists. I will also refer to my own course notes [10] which are bi-
ased towards applications in artificial intelligence, including computational
linguistics, and databases; if you skip the very few mathematical formulas
that appear occasionally, it can give you an easily read (hmmm, well, fairy
easily read) introduction to these areas. The notes have the advantage that
they also introduce Constraint Handling Rules, which we apply to semantic-
pragmatic analysis below.
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Prolog was originally developed by a research group in Marseilles led
by Alain Colmerauer in the 1970s, and spreading of ot was strongly pro-
moted by D.H.D. Warren’s first efficient implementation of Prolog [36] and
R.A. Kowalski’s book from 1979 [29]; since 1982, there have been annual
conferences, ICLP, International Conference on Logic Programming.

2 Definite Clause Grammars

Now you have understood the basic mechanics of Prolog, I will introduce
you to its grammar notation, called Definite Clause Grammars or DCGs among
friends, by means of an example. You can write such rules directly in your
Prolog program files, and you can mix Prolog and DCGs whenever you
wish.

2.1 DCG, lesson 1: The basic grammar notation and syntax analysis

The sheeps program shown above can be written alternatively using gram-
mar rules as follows; we assume it is contained in a file sheepsGrammar.

sheeptalk--> [].

sheeptalk--> sheepsound, sheeptalk.

sheepsound--> [mah].

sheepsound--> [meeeeeh].

You can see that we avoid explicitly clipping off constants one at a time,
and we do not have to write list arguments explicitly. In a grammar, we may
use nonterminal (symbol)s such as sheeptalk, and terminal symbols that are
written in square brackets (i.e., the list notation re-used). In fact Prolog will
translate, behind you back, a grammar such as sheepsGrammar into a Prolog
program that resembles the sheeps Prolog program that I showed above.
To query a grammar, i.e., to use it to analyse text, we need to use a special
built-in predicate called phrase. It is shown at work below:

$ prolog

................

| ?- [sheepsGrammar].

% compiling directory/sheepsGrammar...

| ?- phrase(sheeptalk,[mah,mah,meeeeeh]).

yes
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| ?- phrase(sheeptalk,[mah,mah,mouuuuuuuuuuuuuuuh]).

no

| ?- halt.

$

As you can see, DCGs provide a formal grammar notation, and you can use
the Prolog system to tests examples to convince yourself that the grammar
actually expresses what you have in mind. I claim that this is a very good
reason for students of linguistics to work with these tools.

2.2 DCG, lesson 2: Adding features

A grammar can do more than just say yes and no, because we can add all
kinds of features to the nonterminals, in a very similar way to how we used
arguments for the predicates.

I will use a simplistic extension to the sheepsGrammar to illustrate this.
I will consider how much grass a sheep needs to eat in order to perform
a given speech; let us assume that a sheep needs one lump of grass to say
mah and three lumps to say meeeeeh. For each syntactic phrase, we attach
a feature that counts the total number of lumps for that phrase. This can
be expressed as follows; you should notice the following details: the curly
brackets {· · · } inside a grammar rule indicate a piece of Prolog code that
should be interpreted whenever the given rule applies, and secondly Pro-
log’s strange way of doing arithmetic by the “is” construction used below
in order to perform an addition. Let the file sheepsGrammarGrass contain
the following grammar.

sheeptalk(0)-->[].

sheeptalk(C)--> sheepsound(C1), sheeptalk(C2), {C is C1+C2}.

sheepsound(1)--> [mah].

sheepsound(3)--> [meeeeeh].

It works as follows.

$ prolog

................

| ?- [sheepsGrammarGrass].

% compiling directory/sheepsGrammar...

| ?- phrase(sheeptalk(C),[mah,mah,meeeeeh]).

C = 5 ?
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yes

| ?- halt.

$

Finally I show a more interesting grammar for a subset of English; here I
add a feature for number whenever it is relevant, and express the constraint
that the number for noun phrase must match the number for the following
verb phrase. Notice that number (indicated by variables called “N”) can as-
sume the values plus and sing. We write the grammar in the text file called
english as follows.

s --> np(N), v(N), np(_).

np(N) --> noun(N).

np(plur) --> noun(_), [and], np(_).

noun(sing) --> [joachim].

noun(sing) --> [alexandra].

noun(sing) --> [marie].

noun(plur) --> [dogs].

v(sing) --> [likes].

v(plur) --> [like].

The following queries show it at work; I suggest that you inspect each query
in detail and understand exactly why it answers as it does.

$ prolog

................

| ?- [english].

% compiling directory/english...

| ?- phrase(s, [joachim,likes,dogs]).

yes

| ?- phrase(s, [joachim,like,dogs]).

no

| ?- phrase(s, [marie,and,alexandra,likes,joachim]).

no

| ?- phrase(s, [marie,and,alexandra,like,joachim]).

yes

| ?- halt.

$

You can also extend your grammar with structures that represent syntax
trees, so that when you analyze a sentence, you get as a result the tree that
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represents the phrase structure of that sentence. It is straightforward to do
so, and you can do it yourself, provided that you find a textbook or good
course notes and read about structures in Prolog.

2.3 More reading

Definite clause grammars (DCG) were first presented in 1975 by A. Colmer-
auer [18] under the name of grammaires de métamorphose, and they got their
final shape and name as DCGs in 1980 [31]. Any good Prolog textbook will
have a section on Definite Clause Grammars, and they are included in vir-
tually all available Prolog systems.

3 A brief introduction to Constraint Handling Rules, CHR,
and their application for abductive reasoning

The term abduction usually refers to a kind of criminal act, quite different
from the specific meaning that what I use it for here, and abductive reason-
ing sounds weird to most people.

I first give an introduction to the topic taken from [10], and then I in-
troduce the language of Constraint Handling Rules by means of a few ex-
amples of how they can be used for adding abductive reasoning to Prolog.
Then, I combine this with the grammar notation introduced above.

You may find the name and term “constraints” a bit confusing; this is a
consequence of the application that CHR was originally designed for, which
we discuss briefly in section 3.4 below.

Most applications of abductions, including the methods I introduce be-
low, are used for diagnosis and planning; I will not go into such examples
here, but you may try to think about the similarities between language in-
terpretation and diagnosis.

3.1 Deduction, abduction, and induction in logic programming

The philosopher C.S.Peirce (1839–1914) is considered a pioneer in the under-
standing of human reasoning, especially in the specific context of scientific
discovery. His work is often cited in computer science literature but prob-
ably only a few computer scientists have read Peirce’s original work. I rec-
ommend [21] as an overview of Peirce’s influence seen from the perspective
of computer science.
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Peirce postulated three principles as the fundamental ones:

• Deduction, reasoning within the knowledge we have already, i.e., from
those facts we know and those rules and regularities of the world that
we are familiar with. E.g., reasoning from causes to effects:
“If you make a fire in the living room, you will burn down the house.”

• Induction, finding general rules from the regularities that we have ex-
perienced in the facts that we know; these rules can be used later for
prediction:
“Every time I made a fire in my living room, the house burnt down, aha, ... the
next time I make a fire in my living room, the house will burn down too”.

• Abduction, reasoning from observed results to the basic facts from
which they follow. Quite often it means from an observed effect to pro-
duce a qualified guess for a possible cause:
“The house burnt down. Perhaps my cousin made a fire in the living room
again.”

In fact, Peirce had alternative theories and definitions of abduction and in-
duction; I have adopted the so-called syllogistic version, cf. [21]. I can repli-
cate the three in logic programming terms:

• A Prolog system is a purely deductive engine. It takes a program of rules
and facts, and it can calculate or check the logical consequences of that
program.

• Induction is difficult; methods for so-called inductive logic programming
(ILP) have been developed, and by means of a lot of statistics and other
complicated machinery, they synthesize rules from collections of “facts”
and “observations”. I can refer to [4]6 for an overview of different appli-
cations. Inductive logic programming has been successfully applied for
molecular biology concerned with protein molecule shapes and human
genealogy. See [30] for an in-depth treatment of ILP methods.

• Abductive logic programming; roughly means from a claim of goal that
is required to be true (i.e., being a consequence of the program), to ex-
tend to program with facts so that the goal becomes true. See [27] for
an overview. Abduction has many applications; I may mention planning
(e.g., the goal is “successful project ended” and the facts to be derived
are the detailed steps of a plan to achieve that goal), diagnosis (goal

6 A bit old; if you are interested, you should search for more recent
overview papers and consult proceedings of the recent ILP conferences; see
http://www.informatik.uni-trier.de/�ley/db/conf/ilp/index.html.
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is observed symptoms, the facts to be derived comprise the diagnosis,
i.e., which specific components of the organism or technical system that
malfunction). An important area for abduction is language processing,
especially discourse analysis (the discourse represents the observations,
the facts to be derived constitute an interpretation of that discourse). We
will look into some of these in more detail below and give references.

However, we should be aware that while deduction is a logically sound way
of reasoning, this is generally not the case for abduction and induction. Let
me make a simple analysis for abduction. Assume a logical knowledge base
{a → c, b → c} where the arrow means logical implication. If we know c,
an abductive argument may propose that a is the case. However, this is not
necessarily true as it might that b is the case and not a. Or it could even
be the case that none of a and b are the case, and that there is another and
unknown explanation for c. Abduction is often described as reasoning to the
best explanation. i.e., best with respect to the knowledge we have available.

3.2 Introducing Constraint Handling Rules by examples of abduction

Constraint Handling Rules [22], CHR, is a declarative, rule-based language
for writing constraint solvers and is now included as an extension of several
versions of Prolog. Operationally and implementation-wise, CHR extends
Prolog with a constraint store, and the rules of a CHR program serve as
rewriting rules over constraint stores. CHR is declarative in the sense that
its rules can be understood as logical formulas. I show first a program in
Prolog that does not use CHR and we analyze its deficiencies; it is given as
the file happy1.

happy(X):- rich(X).

happy(X):- professor(X), has(X,nice_students).

It is supposed to describe how someone can become happy, which, however,
does not fit exactly with Prolog’s mode of working, as we will see. We ask
now the following query with the intension of finding out how someone
with the name henning can be happy.

| ?- happy(henning).

! Existence error in user:rich/1

! procedure user:rich/1 does not exist

! goal: user:rich(henning)
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It goes wrong because Prolog needs to investigate calls to rich, which is
not defined by any facts or rules. By giving a suitable command to Prolog
(which I don’t show here), we can get rid of the error message, so that a call
to a predicate with zero facts and rules always fails (as opposed to crashing),
which is more in accordance with a logical meaning of the Prolog program.7

In this case we would get the answer no instead since the predicates rich,
professor and has are all empty, but this is still not satisfactory according
to our intension with the query.

What we wanted to achieve, was one or more explanations of how we
could get the conclusion happy(henning), and to do this, we must make a
part of the program dynamic in the sense that the system should be able
to add facts to see if that made the goal succeed. Now you may see the
relationship with abductive reasoning, which, as I have shown, is beyond
plain Prolog’s capabilities.

We can now use CHR to declare the predicates rich, professor and
has as constraints, in the sense that they are now governed by the CHR
system. We do this in the next version of the program, happy2; the first line
is necessary for making CHR available.

:- use_module(library(chr)).

:- chr_constraint rich/1, prof/1, has/2.

happy(X):- rich(X).

happy(X):- professor(X), has(X,nice_students).

Having these predicates declared as constraints will have the effect that they
1) are not unknown anymore, and 2) whenever they are called, the system
will add the calls to its constraint store. At the end, the collected constraint
store is printed out as part of the answer. We test the happy2 program and
get the following results.8

7 There is a very good reason, though, why Prolog as default emits an error message
rather than silently failing if a non-existing predicate is called. Can you imagine, if
you have a very big program over several thousand lines, and you have misspelled
one occurrence of a predicate; the error message will help you to locate the error
while a failure would make it almost impossible to detect if, e.g., the program
simply answers “no”.

8 Important note concerning SWI Prolog: Some older versions do not print out
the constraint store when the program finishes; if you experience this problem,
check the manual for the version you are using, to find the command that makes
it print the constraint store. Otherwise, there is not much fun in using CHR for
abduction!
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| ?- happy(henning).

rich(henning) ? ;

professor(henning),

has(henning,nice_students) ? ;

no

As you can see, the two alternative answers say that there are two ways that
happy(henning) can be true, namely if either the constraint store contains
rich(henning) or, alternatively, professor(henning) and has(henning,

nice_students).
I will relate these answers to abductive reasoning as follows:

If we forget everything about CHR and type in, say, rich(henning)
as a part of the program, then happy(henning) will succeed, i.e., answer “yes”.

However, we can improve this program even further and make it better to
reflect the real world. It is a fact that university professors are much lower
paid than people in the industry with less education, and we always com-
plain about this. We should somehow express this in our program, and here
the rules of CHR come in handy. Rules in CHR operate on the constraint
store, and a rule fires, whenever the total set of constraints in the store makes
it possible for that rule to apply. We show this in an improved version of the
program, happy3.

:- use_module(library(chr)).

:- chr_constraint rich/1, prof/1, has/2.

prof(X), rich(X) ==> fail.

happy(X):- rich(X).

happy(X):- professor(X), has(X,nice_students).

The construction written with “==>” is a CHR rule of the kind called a prop-
agation rule. The meaning is that when its head (the left hand side) matches
constraints in the store, the body (right hand side) is executed; in the exam-
ple the body amounts to “fail” which will cause the system to try another
branch. Now let us see how this program works; notice that the program
does not know that professor(henning), so we need to state this as part of
the query to get the right answers.

| ?- happy(henning), professor(henning).

professor(henning),

professor(henning),

has(henning,nice_students) ? ;
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no

Here we get only one answer, namely that professor(henning) and has

(henning,nice_students). The alternative postulation a professor to be
rich is removed due to the CHR rule. You may notice that the constraint
professor(henning) is repeated in the answer; this is due to some techni-
cal reasons that I will not spend time on explaining, it does not mean any
thing.

This last example basically shows the part of CHR that you need to know
how to use it for abductive language interpretation, as shown below.

Finally, I will comment on some terminological confusion that appears
because this way of doing, involves usages from different areas.

• “Constraint” refers in CHR context to predicates that have been declared
in as such, and that are treated by the system in a special way. We use
CHR constraints here for what in the tradition of abductive reasoning is
called abducibles.

• “Integrity constraint” refers in database theory and in abductive reason-
ing not to the simple piece of information, but to general knowledge
about the world, about what is possible and what is not. Above, we used
a CHR rule to describe an integrity constraint.

• Finally, as you have noticed, Prolog rules and CHR rules are something
completely different, so referring to “a rule” may be ambiguous.

3.3 Details of CHR

Most of my readers may skip this subsection as you can make interesting
linguistic applications, by generalizing from the examples above. The rest of
this section is taken verbatim from [10], and may contain a few terms that
you may be unfamiliar with.

CHR takes over the basic syntactic and semantic notions from Prolog
and extends them with its specific kinds of rules. The execution of CHR
programs is based on a constraint store, and the effect of applying a rule is
to change the effect of the store. For a program written in a combination
of Prolog and CHR, the system switches between two tow. When a Prolog
goal is called, it is executed in the usual top-down (or goal-directed) way,
and when a Prolog rule calls a CHR constraint, this will be added to the
constraint store — then the CHR rules apply as far as possible, and control
then returns to the next Prolog goal.
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Technically speaking, CHR constraints are first-order atoms whose pred-
icates are designated constraint predicates, and a constraint store is a set of
such constraints, possible including variables that are understood existen-
tially quantified at the outermost level. A constraint solver is defined in
terms of rules which can be of the following two kinds.

Simplification rules: c1, . . . , cn <=> Guard | cn+1, . . . , cm

Propagation rules: c1, . . . , cn ==> Guard | cn+1, . . . , cm

The c’s are atoms that represent constraints, possibly with variables, and
a simplification rule works by replacing in the constraint store, a possible
set of constraints that matches the pattern given by the head c1, . . . cn by the
constraints given by the body cn+1, . . . , cm, although only if the condition
given by Guard holds. A propagation rule executes in a similar way but
without removing the head constraints from the store. What is to the left of
the arrow symbols is called the head9 and what is to the right of the guard
the body. The declarative semantics is hinted by the applied arrow symbols
(bi-implication, resp., implication formulas, with variables assumed to be
universally quantified) and it can be shown that the indicated procedural
semantics agrees with this. This is CHR explained in a nutshell.

CHR provides a third kind of rules, called simpagation rules, which can
be thought of as a combination of the two or, alternatively, as an abbrevation
for a specific form of simplification rules.

Simpagation rules: c1, . . . , ci \ ci+1, . . . cn <=> Guard | cn+1, . . . , cm

which can be thought of as: c1, . . . , cn <=> Guard | c1, . . . , ci, cn+1, . . . , cm

In other words, when applied, c1, . . . , ci stays in the constraint store and
ci+1, . . . , cn are removed.

In practice, the body of CHR rules can include any executable Prolog ex-
pression including various control structures and calls to Prolog predicates.
Similarly, Prolog rules and queries can make calls to constraints which, then,
may activate the CHR rules.

The guards can be any combination of predicates (built-in or defined by
the programmer) that test the variables in the head, but in general guards
should not change the values of these variables or call other constraints;
in these cases, the semantics gets complicated, see references given above if

9 Some authors call each constraint to the left of the arrow a head, and with that
terminology, CHR has multi-headed rules.

TRIANGLE 1 • September 2010



Logic Programming for Linguistics 51

you are interested in the details. Finally, guards can be left out together with
the vertical bar, corresponding to a guard that always evaluates to true.

The following example of a CHR program is adapted from the reference
manual [33]; from a knowledge representation point of view it may seem a
bit strange, but it shows the main ideas. It defines a a little constraint solver
for a single constraint leq with the intuitive meaning of less-than-or-equal.
The predicate is declared to be an infix operator to enhance reading, but this
is not necessary (X leq Y could be written equivalently as leq(X,Y)).

:- use_module(library(chr)).

handler leq_handler.

constraints leq/2.

:- op(500, xfx, leq).

X leq Y <=> X=Y | true.

X leq Y , Y leq X <=> X=Y.

X leq Y \ X leq Y <=> true.

X leq Y , Y leq Z ==> X leq Z.

The first line loads the CHR library which makes the syntax and facilities
used in the file available. The handler directive is not very interesting but
is required. Next, the constraint predicates are declared as such (here only
one such predicate) and this informs the Prolog system that occurrences of
these predicates should be treated in a special way.

The program consists of four rules, one propagation, two simplifications,
and one simpagation. The first simplification describes the transitivity of the
leq constraints. If, for example, the constraints a leq b and b leq c are
called, this rule can fire and will produce a new constraint a leq c (which
in turn may activate other rules).

The second rule is a simplification rule which will remove the two con-
straints and unify the arguments. Intuitively, the rule says that if some X is
less than or equal to some Y and the reverse also holds, then they should
be considered equal (antisymmetry). With constraint store {a leq Z, Z leq

a}, the rule can apply, by removing the two constraints and unifying vari-
able Z with the constant symbols a.

Consider a slightly different example, the constraint store {a leq b, b
leq a}. Again, the rule can apply, by removing the two constraints from
the store and calling a=b. This will fail as a and b are two different constant
symbols.

TRIANGLE 1 • September 2010



52 Henning Christiansen

Notice that CHR is a so-called committed choice language in the sense that
when a rule has been called, a failure as exemplified above will not result
in backtracking. I.e., in the example, the observed failure will not add {a
leq b, b leq a} back to the constraint store so other and perhaps more
successful rules may be tried out. However, when CHR is combined with
Prolog, a failure such as the one shown will cause Prolog to backtrack, i.e.,
it will undo the addition of the last of the two, say b leq a, and go back to
the most recent choice point.

The simplification rule X leq Y <=> X=Y | true will remove any leq

constraint from the store with two identical arguments. This illustrates a
fundamental difference between Prolog and CHR. Where Prolog uses uni-
fication when one of its rules is applied to some goal, CHR uses so-called
matching. This means that the mentioned rule will apply to a leq a but
not to a leq Z. In contrast, the application of Prolog rule p(X,X):-· · · to
p(a,Z) will result in a=Z before the body is entered.

The third rule in the program above is a simpagation rule X leq Y \ X

leq Y <=> true which serves the purpose of removing duplicate con-
straints from the store.

We consider the following query and see how the constraint store
changes.

?- C leq A, B leq C, A leq B.

Calling the first constraint triggers no rule and we get the constraint store {C
leq A}. Calling the next one will trigger the transitivity rule (the last rule),
and we get {C leq A, B leq C, B leq A}. The last call in the query will
trigger a sequence of events. When A leq B is added to the constraint store,
it reacts, so to speak, with B leq A and the second rule applies, removing
the two but resulting in the unification of A and B; for the sake of clarity,
let us call the common variable, which is referred to by both A and B, V1.
Now the constraint store is {C leq V1, V1 leq C}. The same rule can apply
once again, unifying C and V1, so that the result returned for the query is
the empty constraint store and the bindings A=B=C.

In general, when a query is given to a CHR program (or a program
written in the combined language of CHR plus Prolog), the system will
print out the final constraint store together with Prolog’s normal answer
substitution. An alternative solution can be asked for as in traditional Prolog
by typing a semicolon.
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I end the presentation of CHR by showing a few simple examples taken
from the CHR web site [5]. This program by Thom Frühwirth evaluates the
greatest common divisor of positive numbers.

:- use_module( library(chr)).

handler gcd.

constraints gcd/1.

gcd(0) <=> true.

gcd(N) \ gcd(M) <=> N=<M | L is M-N, gcd(L).

Here are a few test queries.

?- gcd(2),gcd(3).

?- X is 37*11*11*7*3, Y is 11*7*5*3, Z is 37*11*5, gcd(X),

gcd(Y), gcd(Z).

The following program generates the prime numbers between 1 and n when
given the query ?- primes(n). It was written by Thom Frühwirth and
adapted by Christian Holzbaur.

:- use_module(library(chr)).

handler primes.

constraints primes/1, prime/1.

primes(1) <=> true.

primes(N) <=> N>1 | M is N-1, prime(N), primes(M).

prime(I) \ prime(J) <=> J mod I =:= 0 | true.

3.4 More reading

Constraint Handling Rules (CHR) were developed by T. Frühwirth from
around 1992, first publication [24], in order to have a declarative language
for writing constraint solvers for, e.g., working with arithmetic in logic pro-
gramming. Later, it turned out that CHR was suited to a much wider class
of applications as illustrated in the present article. The use of CHR for ab-
ductive reasoning was discovered by S. Abdennadher and myself in 2000 [1]
and later the ideas have been refined in my own work, largely in an inspir-
ing collaboration with Veronica Dahl, see, e.g., [6, 11–15].
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A recent book [23] gives a thorough, mainly theoretical treatment of all
aspects of CHR, and the collection [32] gives an overview of recent applica-
tions and developments concerning CHR. See also [22,25] for good overview
papers and the CHR website
http://www.cs.kuleuven.be/∼dtai/projects/CHR.
Since 2004, there have been annual workshops on CHR.

4 Language interpretation as abduction in Prolog+CHR

Now we have all the tools for doing abductive language interpretation: We
have the DCG grammar notation for the syntax, and I will show how CHR
can take care of a large portion of the semantic-pragmatic analysis. In fact, it
is interesting to see how the use of abduction tends to remove the borderline
between semantics and pragmatics.

4.1 Introducing abductive interpretation by examples

The following example was developed when I gave a talk for students at
GRLMC in Tarragona, so that sets the context for the example. It may be
possible that some people attend the talk while others are away; further-
more, we will be interested in who is able to see whom. Note that the exam-
ple is not always perfect from an intuitive point of view, but its shows the
method.

We make a first suggestion for a grammar that uses CHR to extract (a
selected part of) the meaning of a given discourse. In this version, in file
discourse1, we do not include any CHR rules. Notice that instead of having
a general rule for sentences, we have specialized rules for the different sort
of sentences that we want to analyze. This is not essential, but made in order
to simplify this example; for larger applications, it may be advisable to use
a more homogeneous format.

:- use_module(library(chr)).

:- chr_constraint at/2, sees/2.

story --> [] ; s, ['.'], story.

s --> np(X), [sees], np(Y), {sees(X,Y)}.

s --> np(X), [is,at], np(E), {at(E,X)}.

s --> np(X), [is,on,vacation], {at(vacation,X)}.

np(pedro) --> [pedro].
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np(maria) --> [maria].

np(loli) --> [loli].

np(grlmc) --> [grlmc].

np(hennings_talk) --> [hennings,talk].

np(vacation) --> [vacation].

Let us show a few examples of using this grammar for language analy-
sis. The following query analyzes a very simple sentence and represents its
meaning as a CHR constraint.

| ?- phrase(story, [pedro,is,at,grlmc,'.']).

at(grlmc,pedro) ? ;

no

Let us try another, longer discourse:

phrase(story, [pedro,sees,maria,'.', pedro,sees,loli,'.',

pedro,is,at,grlmc,'.', maria,is,at,hennings,

talk,'.',loli,is,on,vacation,'.']).

at(vacation,loli),

at(hennings_talk,maria),

at(grlmc,pedro),

sees(pedro,loli),

sees(pedro,maria) ? ;

no

It appears that each sentence is “translated” into a formal form, but there is
not much semantic-pragmatic processing involved. So let us add a few CHR
rules to express a bit of simple every-day knowledge. The first rule says that
if someone is at GRLMC, he or she is also in Tarragona; the next one says
that anyone can only be in one location (it uses a so-called simpagation rule
which removes that last of the matched in constraints, so that we avoid
duplicate constraints). Next we express that if someone is at my talk, he or
she is also at GRLMC, and finally, if someone is on vacation, he or she is not
in Tarragona.10

10 The diff constraint is a device that ensures that two items need to be different
for the rest of the discourse. You may use instead Prolog’s built-in dif (one f)
instead, but my handcrafted version gives more readable output. It can be defined
as follows; you do not need to read this; I include it for completeness only and to
indicate that I have not hidden any code under the carpet to get it to work.
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at(grlmc,X) ==> in(tarragona,X).

in(Loc1,X) \ in(Loc2,X) <=> Loc1=Loc2.

at(hennings_talk,X) ==> at(grlmc,X).

at(vacation,X) ==> in(Loc,X), diff(Loc,tarragona).

During an analysis of the discourse, these rules will fire as soon as they
can and do some simple reasoning on the constraint store as the analysis
proceeds. The program discourse2 also contains these rules.

| ?- phrase(story, [pedro,sees,maria,'.', pedro,sees,loli,

'.',pedro,is,at,grlmc,'.', maria,is,at,

hennings,talk, '.',loli,is,on,vacation,'.']).

at(vacation,loli),

at(grlmc,maria),

at(hennings_talk,maria),

at(grlmc,pedro),

in(_A,loli),

in(tarragona,maria),

in(tarragona,pedro),

sees(pedro,loli),

sees(pedro,maria),

diff(_A,tarragona) ? ;

no

As it appears, the meaning extracted from the discourse now also in-
cludes for each person, in which place he or she is. Note that loli is in
some place, referred to be a variable written by the system as “_A”; we do
not know where this place is, except that it is not tarragona.

We will now make one last extension, discourse3, of the program to
indicate who can see whom. If you are able to see someone then you are
both in the same place, e.g., Tarragona, or you contact the person using
skype. The following CHR rule needs a bit of explanation. The semicolon
in the body signifies a logical “or” so that the system will try out both
possibilities if asked for more answer or if the first alternative leads to a

:- chr_constraint diff/2.

diff(X,X) <=> fail.

diff(A,B) \ diff(A,B) <=> true.

diff(A,B) \ diff(B,A) <=> true.

diff(A,B) <=> ?=(A,B) | true.
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failure. Secondly, you should ignore the irrelevant “true |” in the rule:
there is a design bug in the CHR syntax so that when you use a semicolon
in the body, you need to write it like this; there is no reason to make any
effort to understand why.

see(X,Y) ==> true | (in(L,X), in(L,Y) ;

in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

Let us try the usual query again with the program that contains all the rules
shown so far.

| ?- phrase(story, [pedro,sees,maria,'.', pedro,sees,loli,

'.',pedro,is,at,grlmc,'.', maria,is,at,

hennings,talk, '.',loli,is,on,vacation,'.']).

at(vacation,loli),

at(grlmc,maria),

at(hennings_talk,maria),

at(grlmc,pedro),

in(_A,loli),

in(tarragona,maria),

in(tarragona,pedro),

see(pedro,loli),

see(pedro,maria),

skypes(pedro,loli),

diff(tarragona,_A) ? ;

no

We notice that the only answer is one in which Pedro sees Loli via skype,
since the other option that they are in the same place is not possible: Pedro
is in Tarragona and Loli is somewhere which is not Tarragona. This exam-
ple has illustrated how the CHR rules can process the bits of information
generated for each sentence and form it in into a knowledge base, that also
contains knowledge that is not expressed directly in the discourse, but is
somehow necessary for the discourse to be made.

There are still a few imperfections in this grammar, for example that the
sees relationship is not symmetric, but we would expect that if A sees B
then B also sees A; this is easy to repair (when you are familiar with CHR),
but there is no reason to spend more time on this here.
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4.2 More reading

The principle of seeing language interpretation as abduction was first for-
mulated in [26], which is a highly referenced paper from 1993. Abduction in
logic programming was studied from around 1990 or before with [28] as a
central reference; see the following overview papers [20, 27]. The use of ab-
duction implemented with CHR starts around 2000 with my own work; the
first references are [6, 7]. Later I developed these ideas together with Veron-
ica Dahl, which led to the combined use of DCG and CHR as demonstrated
above. The work with Veronica also resulted in the Hyprolog system which
is briefly described next.

In [16,17], we have developed a realistic example of a CHR based gram-
mar, which reads so-called use cases and produces UML diagrams. Use
cases are used for the sort of system analysis that is made for the develop-
ment of complex computerized systems that are typically used in large and
complex organizations; use cases are small stories about what goes in the
organization. A UML diagram, on the other hand, is a graphical represen-
tation of which classes of objects appear and their mutual relationships.

5 One step further: Hyprolog

Hyprolog is a system thought out by Veronica Dahl and myself, which
puts an additional set of facilities on top of Prolog+DCG+CHR. The syntax
for declaring abducible predicates is different (in Hyprolog, we call them
abducibles rather than chr_constraints), and a few more aspects of ab-
duction not described here are supported. Most notably, Hyprolog includes
so-called assumptions that work very much like abducibles, but they also
reflect the time which is implicit in a discourse — some things are said be-
fore and after certain other things — and they have explicit creation and
applications.

I will not explain Hyprolog in detail, but you can refer to the arti-
cles [13, 14] and the Hyprolog User’s Guide which is available at [9] to-
gether with source code and examples. First we describe these new devices,
assumptions, and then we sketch a larger example available from [9].

5.1 Assumptions: Like abduction but with time

The text in this subsection is taken from [14], written together with Veronica
Dahl.
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Assumptive logic programs [19] are logic programs augmented with a)
linear, intuitionistic and timeless implications scoped over the current con-
tinuation, and b) implicit multiple accumulators, particularly useful to make
the input and output strings invisible when a program describes a grammar
(in which case we talk of Assumption Grammars [19]). More precisely, we
use the kind of linear implications called affine implications, in which as-
sumptions can be consumed at most once, rather than exactly once as in
linear logic. Although intuitively easy to grasp and to use, the formal se-
mantics of assumptions is relatively complicated, basically proof theoretic
and based on linear logic [19, 34, 35]. Here we use a more recent and ho-
mogeneous syntax for assumptions introduced in [8]; we do not consider
accumulators, and we note that Assumption Grammars can be obtained by
applying the operators below within a DCG.

+h(a) Assert linear assumption for subsequent proof steps.
Linear means “can be used once”.

*h(a) Assert intuitionistic assumption for subsequent
proof steps. Intuitionistic means “can be used any
number of times”.

-h(X) Expectation: consume/apply existing int. assumption.
=+h(a), =*h(X), =-h(X) Timeless versions of the above, meaning that order of

assertion of assumptions and their application or
consumption can be arbitrary.

A sequential expectation cannot be met by timeless assumption and vice
versa, even when they have the same name. In [35], a query cannot succeed
with a state which contains an unsatisfied expectation; for simplicity (and to
comply with our implementation), this is not enforced in HYPROLOG but
can be tested explicitly using a primitive called expections_satisfied. As-
sumption grammars have been used for natural language problems such as
free word order, anaphora, coordination, and for knowledge based systems
and internet applications.

5.2 Sketch of an example Hyprolog program

A grammar for a subset of English is available at the Hyprolog web-
site [9], click “Sample Hyprolog programs” and then “shootingLucky-
LukeAdvanced”.11 It includes pronoun resolution, in which we only allow

11 There are some mistakes in the version at the Hyprolog website. A corrected one
is available at http://www.ruc.dk/∼henning/LP-for-Linguists.
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backward references, so that “he” can only refer to a male character which
has already been mentioned, and “they” can only refer to a group of at
least two people already mentioned. The sentence in question refers to a
world where people are shooting at each other, and those who have been
shot, cannot shoot after that event. Each event is time-stamped according to
the sentence in which it appears.12 Here is an example of a query and its
answer; as we see there is only one possible answer.

| ?- phrase(discourse, [luckyLuke,shoots,jackDalton,

calamityJane,shoots,averellDalton,

they,shoot,joeDalton]).

event(2,shooting,[calamityJane,luckyLuke],joeDalton),

event(1,shooting,calamityJane,averellDalton),

event(0,shooting,luckyLuke,jackDalton),

dead(2,joeDalton),

dead(1,averellDalton),

dead(0,jackDalton),

alive(2,luckyLuke),

alive(2,calamityJane),

alive(1,calamityJane),

alive(0,luckyLuke),

'*acting'(masc,joeDalton),

'*acting'(masc,averellDalton),

'*acting'(fem,calamityJane),

'*acting'(masc,jackDalton),

'*acting'(masc,luckyLuke) ? ;

no

| ?-

For example, you can see that “they” in the last sentence refers to Calamity
Jane and Lucky Luke as they are the only persons mentioned still alive at the
time for the shooting. Assumptions such as '*acting'(masc,jackDalton)
are used for pronoun resolution that also involves the semantic reasoning
that only live people can shoot.

As a final example, we illustrate how we can add a context to a discourse,
which corresponds to the everyday situation that some amount of common
knowledge is assumed, when a conversation begins.

12 This time-stamping may not be so elegant; I believe it should be possible to get
rid of it by using assumptions in the right way.
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We can define a context in terms of a Prolog rule, which calls certain
constraints and assumptions; here we show only the assumptions in the
initial context.

duckville:-

*acting(masc,huey),*acting(masc,dewey),

*acting(masc,louie), *acting(masc,donald),

*acting(fem,daisy).

We can use it as follows, where it is applied to pronoun resolution.

| ?- duckville, phrase(discourse, [she,shoots,donald]).

event(0,shooting,daisy,donald),

dead(0,donald),

alive(0,daisy),

... ?

Note that this principle for setting up an initial context can also be used
without the Hyprolog system, so that you can extend the examples shown
in the previous sections (avoiding assumptions, of course, which is specific
to Hyprolog).

5.3 More reading

The Hyprolog system is the result of my collaboration with Veronica
Dahl [13, 14], and I have made an implementation which is available at my
website, http://www.ruc.dk/∼henning/hyprolog/ [9]; there are many ex-
amples here that may be useful to inspect. The assumptions in Hyprolog
are inspired by Veronica’s earlier work [19, 34].

6 A few Prolog and CHR systems

There are several good Prolog systems around, some of which may be
downloaded for free, but not all include CHR (and occasionally not even
DCG).

All examples shown above run in both SICStus Prolog, www.sics.se/
sicstus, and SWI Prolog www.swi-prolog.org. SWI is free, but SICStus costs
money, although it is available in a test version for 30 days; check if your
institution has a site license for SICStus.

You may find a list of all Prologs that support CHR at
http://www.cs.kuleuven.be/∼dtai/projects/CHR/.
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An Introduction to Natural Language Processing:
the Main Problems

Veronica Dahl
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1 Definition, Scope

Natural Language Processing aims to give computers the power to automat-
ically process human language sentences, mostly in written text form but
also spoken, for various purposes.

This sub-discipline of AI (Artificial Intelligence) is also known as Natural
Language Understanding. So first of all, what do we mean by “understand-
ing”? According to Longman’s Dictionary of Contemporary English (1990),
to understand is “to know or recognize the meaning of (something) or the
words spoken by (someone).”

This definition plunges us into the ongoing debate about whether com-
puters can know, think, feel, etc. We shall not attempt here to elucidate these
deep questions. Instead, we will take the modest approach of acknowledg-
ing that no human or formal science has yet come up with a complete,
satisfactory explanation of such human activities as thinking, knowing, and
understanding.

However, we can still arrive at a useful working definition of what “un-
derstanding language” means for a computer, by noting that given a lan-
guage stimulus, certain computer programs can replicate to some extent



66 Veronica Dahl

some of the behavior that would typically be elicited by a human under
the same language stimulus. Thus we can consider a computer program as
being able to, in some sense, “understand” language, if its output given lin-
guistic input roughly corresponds to a response that might be produced by
a human given the same input.

For instance, consider a database query such as:

Do you know what time it is?

and consider the following possible answers:

1. Five past eleven.
2. Yes.
3. True.
4. 1.

Assuming the time of the question is 11:05, the first is the kind of answer
a human might produce, whereas the three remaining answers represent
truthful but unhelpful versions of a literal answer: 2) replies in the affirma-
tive, 3) gives a truth value representing the affirmative answer, 4) gives the
same information in binary notation. We can think of these successive an-
swers as diminishing in the degree of “understanding” shown, as measured
by how close to human reaction the machine’s reaction is.

Similarly, if we ask a machine to translate:

‘La voiture n’a plus d’essence.’

we can conceivably get machine translations such as:

1. The car has no more gas.
2. The car has no more essence.
3. The car has no more soul.
4. The car not has more of essence/soul.

Here again, the degree of “understanding” evidenced by the translation
given decreases as we proceed to the next example: “essence” is not the right
word for translating ‘gas’, but is a better match than ‘soul’, whereas example
4) is simply a literal, word-by-word translation which does no justice to the
original meaning.

This view of understanding language parallels the definition of intelli-
gence proposed by Turing: if a machine can fool a human into believing he

TRIANGLE 1 • September 2010



An Introduction to Natural Language Processing: the Main Problems 67

is interacting with another human via a computer terminal, then it can be
said to be intelligent.

But both Turing’s test and the above proposed view of machine under-
standing of language have limitations. For instance, Weizembaum’s famous
Eliza program, which modelled a psychological counselor, could certainly
fool a human into believing s/he was interacting with another human via
a computer terminal, yet it only did this through parrot-like, key-word ori-
ented sentence transformations which could by no means be called “intelli-
gent”. For instance, a sentence of the form: ‘I feel X’, was simply transformed
into ‘Why do you feel X’, with no regard whatsoever to what it might mean,
through a purely word-processing transformation.

More modern language processing systems are still concerned with
human-like behavior, but also take inspiration from the results that other
disciplines relating to language and cognition have to offer. For instance,
we can take a linguistic theory, and try to tailor it to our own computational
needs, under the assumption that this theory comprises a usable if imperfect
model of what might be actually happening in a human brain.

We are now ready to define the discipline and its scope.

Definition

Natural Language Processing is a branch of Artificial Intelligence in which
computers are programmed to simulate an “understanding” of human lan-
guages such as Catalan, English etcetera, for various purposes, such as con-
sulting databases through human languages rather than some specialized
computer interface, or translating text automatically from one language to
another, or communicating across virtual worlds.

Scope

The areas in which NLP has been most successful are text processing (vs.
spoken language), for isolated sentences (vs. dialogue), and with restrictions
regarding both the subset of language addressed and the problem domain.
The results are, however, interesting within the domains addressed, and the
language is restricted usually in ways which still result in allowing input
one would naturally write, as opposed to condensed or telegraphic versions.
For example the passive voice and a number of other linguistic constructs,
yet those allowed do permit to express all concepts needed in a natural
fashion.
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Our notion of machine “understanding”, thus, while not being confined
to behavior alone, is much more modest than that of human understand-
ing: , it boils down to being able to respond to some extent as humans do,
using adaptations of models of language provided or inspired by cognitive
sciences, in particular linguistics. As pointed out in [5], “if machines are to
communicate in human terms, they must embrace all the facets of natural
language, and thus all of the parts of the broad topic of linguistics”.

We shall next discuss some of these facets, in order to understand some
of the reasons why the mechanical understanding and translation of human
languages is not as easy as one might expect upon first examination. In this
process we shall see that, for good reason, most problems that are central
to AI are also central to NLP, which makes NLP doubly difficult: it must
embrace all parts of the broad topic of linguistics, as well as those of the
broad topic of AI.

2 The most common problem in NLP

The most studied problem in natural language processing is the parsing
problem: given a grammar and a presumed sentence in the language de-
fined by that grammar, obtain some representative structure(s) if the sen-
tence is indeed in the language. Whether for parsing or other NLP problems,
such as generation, translation, concept extraction, etc, we need to capture
an infinite number of sentences with a finite device such as a grammar. This
implies the need for a concise, regularity-capturing description means, such
as can be provided by logic programming.

Why is it so difficult? Concrete examples

Communications in natural language tend to assume vast contextual and
empirical world knowledge that can be taken for granted in a human, but
must be somehow spelled out for a machine. We shall examine a few cases
in which this spelling out can be difficult.

Ambiguity:

In the first place, human language is plagued with ambiguities that we are
not always aware of, owing to the fact that the knowledge of the world that
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we have and unconsciously use often prevents us from even seeing alterna-
tive possible meanings that a computer program would have to consider.

Take for instance the database query:

Which is the price of a cabinet with four drawers?

While most humans will only see one meaning in this apparently
straightforward question, a machine will have to decide whether ‘with four
drawers’ modifies ‘price’ or ‘cabinet’. That is, are we asking for the price of a
cabinet such that that price has four drawers, or for the price of a cabinet
such that the cabinet has four drawers? Obviously (to us), the first meaning
is nonsense, since prices cannot possess drawers. But for a computer, unless
we have somehow programmed into it the world knowledge that protects
us from even considering the nonsensical sense, both meanings are, a priori,
equally likely.

A poignant example of structural ambiguity is the case of propositional
phrases, where ambiguity is combinatorially explosive. Take for example
the following sentence:

I saw a man in the park with a telescope.1

This phrase can be interpreted in different ways according to which
prepositional phrase attaches to which antecedent: either it tells us that the
person was in the park and there saw a man who had a telescope, or that
the person saw a man in the park and this park had a telescope, or that the
person saw a man in the park through a telescope.

Different levels within Natural Language

We have no problem in simultaneously and effortlessly capturing the vari-
ous levels speech involves (such as phonology, syntax, semantics, pragmat-
ics, etc.), whereas precisely conveying them to a computer is quite difficult.
In practice, most of the processing out there is syntactic, with some seman-
tics to guide it. Speech recognition has lately advanced significantly, but still
not enough to replace humans. The different levels can be characterized as:

Prosody: studies rhythm and intonation.

1 The example belongs to Bill Wood
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Phonology: studies sounds.

Morphology: studies syntactic subunits in a word (unity: a morpheme).

Syntax: studies rules for combining words into phrases and sentences.

Semantics: studies meaning.

Pragmatics: studies ways in which to use language with respect to world
knowledge.

Note that none of these levels is trivial; e.g. according to how punctua-
tion signs are placed in the following poem, we can find in it four completely
different readings (Spanish speakers: find them!)

TRES BELLAS QUE BELLAS SON 2

Tres bellas que bellas son
me han exigido las tres
que diga de ellas cual es
la que ama mi corazón

si obedecer es razón
digo que amo a Soledad
no a Julia cuya bondad
persona humana no tiene
no aspira mi amor a Irene
que no es poca su beldad

Pragmatic Knowledge, Implicit Meanings:

Another difficulty with processing language, which we have hinted at with
our example: ‘Do you know what time it is?’ concerns the need for pragmatic
knowledge of the world to be shared with a machine. This knowledge is
largely implicit and even unconscious in humans, so it is not easy to think
of all its possible instances ahead and spell them out.

2 Cited by Roberto Vilches Acuña in: Curiosidades literarias y malabarismos de la
lengua, Editorial Nascimiento, Santiago de Chile, 1955.
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A more radical example is the indirect request ‘How cold it’s getting’,
uttered in the hope that the hearer will in response close an open window
he or she is near to. Whereas in the time request example there is at least
a mention to the information wanted (what the time is), in this case, the
utterance contains no hint whatsoever of what is actually being asked.

As a final example, consider:

I was caught running a red light and the pig fined me for it.

Most people would not have any difficulties understanding who ‘the pig’
is, and that this is not actually about running but rather about driving a car
past a red light. All this would be very hard for a computer to infer.

Imprecision

While natural languages are inherently imprecise, most methods for pro-
cessing language are unable to properly deal with imprecision. Statistical
parsing approaches view precision as a measure of how good a parsing re-
sult is and usually do not concern themselves with how to more precisely,
convey the meaning of an imprecise expression.

Zadeh [8] defines the notion of precisiation, within a theory called CW
-Computing with Words-, as the conversion of a semantic entity, such as a
question, proposition, command, etc. into another semantic entity which is
computation-ready, that is, can be computed with.

For sentences that can be precisely interpreted, the notion of precisiation
coincides with that of translating them into a semantic formalism which
renders their interpretation and which can then be computed with by the
usual means e.g. if the sentence is a query to a knowledge base, the evalua-
tion of its semantic representation with respect to that knowledge base will
compute into the answer to that query.

For sentences that cannot be precisely interpreted, existing machinery al-
lows the precisiation of a simple imprecise sentence such as “Most Swedes
are tall” such that it can serve as a basis for answering questions such
as: “What is the average height of Swedes?” as concretely as possible,
e.g. “Between approximately 170 cm and 200 cm” (also expressible by a
user-friendly graphical interface provided by a specialized mouse called Z-
mouse). However, this machinery is still being developed, and much needs
to be done in terms of integrating it with contemporary NLU systems.
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Coordinated sentences

Sentences with “and”, “or”, “but” and so on contain two or more sentences.
They are a typical source of implicit meanings to be reconstructed, e.g. in:
‘John ate a steak and drank a beer’, we know right away that John drank a beer,
even though the subject in the second conjoint is left implicit.

Reconstructing the missing parts is not as easy as in the above example
unless we have adequate pragmatic information. For instance, almost un-
consciously we realize that ‘cold hands and feet’ is shorthand for ‘cold hands
and cold feet’, whereas no implicit repetition of ‘cold’ would even occur to us
if we instead were to hear ‘cold hands and fever’.

Compound nouns

It is often difficult to see, in a sequence of several nouns, which of the nouns
are head nouns and which are modifiers. For instance, Gerald Gazdar and
Chris Mellish identify no less than 42 distinct structural descriptions in the
innocent-looking phrase: ‘Judiciary plea settlement account audit’ [3], with just
binary noun compounding. Many of these would not even occur to a human
but must be carefully sorted through by a machine.

Overgeneration

Another problem is that of avoiding overgeneration. During analysis this
is often not crucial, assuming the sentences that are input are correct, but
for synthesis we should not allow our grammar to produce more sentences
than the correct ones.

Long distance dependencies

Finally, we must provide a means for recognizing relationships between
parts of the sentence that may be arbitrarily far away from each other, e.g.
in order to relate a pronoun with the noun phrase it refers to, or in order to
allow topicalization, as in:

Logic, we love.
Logic, I know we love.
Logic, I suspected he knew we love.

where the direct object of ‘love’ has been displaced for emphatic effect,
and can appear at an arbitrary distance from it.
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Stylistic resources

To complicate matters, stylistic resources such as metaphor, irony or allusion
may also catapult a text beyond its literal meaning, thus making it difficult to
know how much and which kind of background knowledge will be needed
for a useful account of this meaning. Consider for instance the following
excerpt from Juliet’s Monologue, scene V, of Shakespeare’s Romeo and Juliet:

Love’s heralds should be thoughts, which ten times faster glide than the
sun’s beams, driving back shadows over lowering hills.

Clearly such texts are beyond literal interpretation: thoughts are being
personalized- they do not in fact glide, except metaphorically; sun’s beams
do not ‘drive’ shadows back, nor do the hills ‘lower’. Topicalization (the
movement of a phrase outside from its more habitual order, for the pur-
pose of giving it emphasis) is also present: ‘ten times faster’ has been moved
from where it normally would be located and now precedes the verb ‘glide’.

As an example involving humor, consider the following notice, found at
a public service office (and from which I should take inspiration for charg-
ing my students ¨̂ ):

Answers: 1 euro
Answers that require thought: 2 euros
Correct answers: 4 euros
Discussions: 40 euros
Awkward smiles: free

Any human can immediately see the humoristic implications of this no-
tice, but they would likely be lost to a computer.

Intention

Intention is paramount in human communication. Grice has uncovered
principles of cooperative communication, and the usual assumption under-
lying NLP systems is that the intention is to communicate.

However, a message can be understood but stonewalled, as in the fol-
lowing dialogue between a new schoolteacher and one of the students in
his class (example taken from the book Le Petit Nicolas):

Je m’appele M. Leblanc- et vous? (My name is M. Leblanc- and yours?)
Nous non. (Ours isn’t.)
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It is obvious that the student knows the request is to know what their
names are, rather than to know whether they are called M. Leblanc as well.
The question’s misinterpretation is intentional, and for a machine to analyze
the reply’s real meaning, it would need to be given very subtle contextual
knowledge of beliefs and intentions.

The Cultural Dimension

This human reliance on world knowledge becomes even more difficult to
emulate by a machine when different views of the world intervene. In the
time request example, the knowledge of its implicit meaning is fairly univer-
sal. Almost anyone can interpret the meta-message contained in that literal
message.

But when different cultures or world views intervene, interpreting meta-
messages is not such a simple matter. Sociological research by [6], for in-
stance, analyses how some meta-messages typical of one sex tend not to be
understood by members of the opposite sex. These misunderstandings are
explained in terms of the thesis that communication between the sexes is es-
sentially cross-cultural communication, given that boys and girls grow up in
what are essentially different cultures (manifested for instance through dif-
ferent kinds of games), and are socialized in different ways. Consequently,
one sex leans more towards a hierarchical and problem-solving interpreta-
tion of the world, while another leans towards an interpretation based on
relationships and networking. These differential upbringings result in dif-
ferent world views and a consequent difficulty in interpreting each other’s
meta-messages.

Now, if members of the same social group can have trouble understand-
ing each other’s meta-messages simply because of gender differences in
upbringing, what can we expect for more patently cross-cultural communi-
cation? Many of us have direct experience of the problems encountered in a
foreign country, even when our own language is spoken there. For instance,
a reply of ‘Thanks’ to a simple offer for a second helping of food may well
mean ’Thanks, yes’ in one dialect, while meaning ‘Thanks, no’ in another di-
alect of the same language. And even within the same country, or even city,
we encounter language differences that can be quite marked, as in cockney
versus the prescriptive norm, also known as “BBC English”, or as in juvenile
jargons vs. adult talk.

Rigorously speaking, then, all these pragmatic, stylistic, gender, dialec-
tal, social class, and other differences would have to be encoded in some
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computationally efficient way in order for a machine to be able to respond
as subtly as a human. But of course, in machines we are content with much
less than what we expect from humans. Typically, we reduce the domain
of application in such a way that human-like reaction is made much easier.
For instance, if we reduce ourselves to a hospital environment for a database
consultation application, the subset of language to be considered, as well as
the possible stylistic and other variants, reduces considerably.

In the next section we shall examine how much simplification we have
been content with in the past, and how much more ambitious we can get
given the state-of-the-art and the progress in hardware technology.

From all these examples we can see why it is so difficult to teach a
computer to properly understand unrestricted language. It is a process
that involves practically all aspects of human experience: thoughts, ac-
tions, feelings, beliefs, knowledge, expectations, time, learning, reasoning,
metaphors, humor, irony, etcetera. Therefore, the central problems in Natu-
ral Language Processing include many of the central problems in Artificial
Intelligence: how to represent knowledge, problem solving, reasoning, non-
monotonicity, belief revision, planning, learning, ... in addition to its own
specific problems.

3 Divide and Reign

Our problem being as formidable as we hope to have impressed upon the
reader, the best hope we have of solving it is through dividing to reign,
in particular by scaling it down to solvable size, and attacking different
problems separately. This generates new sub areas within NLP.

For instance, one of the most widely studied areas in language under-
standing is that of question-answering systems, which usually model a sub-
set of language specific to a given target domain (e.g. a medical domain).

While not easily adaptable to other domains, these systems have met
with reasonable success, owing to the fact that the context of discourse in
these systems can be largely predicted. This is useful for instance in resolv-
ing ambiguities due to polysemy (multiple meanings for one word). In a
query system for a financial domain, for example, we could describe only
one meaning- the most likely one- of the word ‘bank’ (as a financial institu-
tion), on the reasonable assumption that most users of this system will use
the word in its financial, not its geographic (as in ‘the bank of a river’) sense.
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We can also reduce the range of natural language to be accepted (for
instance, only sentences in the active, not passive voice, will be allowed).

A further simplifying factor concerns the limitation to single, isolated
queries, which allows us a smaller context in which to look, for instance, for
pronoun reference.

Machine translation is a sub-area that has had a more eventful history.
Its initial period was characterized by the naive view that one-to-one corre-
spondences existed between languages, and all we had to do was to encode
them. But for instance, languages such as Lithuanian or Russian do not have
any articles. The colors that are recognized in a rainbow vary from one cul-
ture to another. The one-to-one correspondence view soon collapsed under
the evidence that many of the concepts and the syntactic and lexical con-
structions used to cover them are language or culture dependent. The initial
over-enthusiasm resulting from the naive view gave way to an equally ex-
cessive pessimism, and funds became very scarce.

The three main approaches to machine translation are the direct one, the
rule-based one, and the inter-lingua, with statistical approaches pitching in
as well [4].

In the direct approach, heavily language-specific programs are designed
to translate from one given language into another. Word-by-word replace-
ment routines are complemented with ad hoc transformations performed
after lexical substitution.

In the rule-based, also called transfer, approach, a source-language sen-
tence is translated into a machine-readable form corresponding to the source
language. This form is then mapped into a machine-readable form for the
target language, and then the output is generated from it. The intermediate,
machine-readable forms are dependent on the language considered. There-
fore, mappings need to be constructed for each source-language/target lan-
guage pair.

In the inter-lingua approach, the source-language sentence is mapped
into a language-independent representation, from which the surface struc-
ture is systematically produced.

Just as natural language query systems do, successful machine trans-
lation systems also restrict their scope to very limited domains of dis-
course (e.g. weather reports), and to specific subsets of natural language
(e.g. the relatively unambiguous declarative sentences found in technical
documents). As well, they usually depend on interaction with human users
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and/or post-processing by a human translator in order to correct the sys-
tem’s errors.

Machine translation systems also usually pay the price of extensive de-
velopment and tuning to particular clients. To date, these systems are not yet
widely used, both because of the limitations described above, and because
of the time and expense required to develop them. So for a translation sys-
tem we might relax our NLP definition even further and suggest that, even
if its output is not what would be produced by a human, it will be accept-
able if it helps the job of a human translator, e.g. by reducing his/her job to
correcting the system’s mistakes.

4 Concluding remarks

We have discussed some of the main difficulties in formalizing and automat-
ing the tasks of processing human language. As we have seen, some of them
are even hard to imagine for humans who are used to effortlessly using and
interpreting language, since so much of the knowledge used in so doing is
unconscious and resorts to fuzzily defined world knowledge.

One implicit notion throughout our discussion is the desirability of using
the results of cognitive sciences as well, and in particular of linguistic theory.
Theoretical linguistics has indeed developed remarkable insights on some
very complex linguistic phenomena, and is developing in directions which
are more and more compatible with computational linguistic needs. How-
ever, it is also fair to observe that these theories do not have as their goal or
method to provide immediate comprehensive descriptions of actual natural
language. A natural language processing system that must process actual
text (e.g. spontaneous speech) with a minimum of coverage and accuracy,
must solve many problems for which linguistic theory does not have even
in principle solutions. Moreover, when building actual language processing
systems, many instances are found in which the analyses of linguistic theory
are contradicted by the data.

The main challenge is, then, to adapt the general analyses and insights
from linguistic theory into actual language processing systems, and to deli-
cately interweave the many independently explored facets of language pro-
cessing.
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