
Derivation �Trees� and Parallelism in

Chomsky-Type Grammars

Benedek Nagy

Research Group on Mathematical Linguistics

Universitat Rovira i Virgili

Tarragona, Spain

Faculty of Informatics

University of Debrecen

Debrecen, Hungary

E-mail: nbenedek@inf.unideb.hu

Summary. In this paper we discuss parallel derivations for context-free, context-

sensitive and phrase-structure grammars. For regular and linear grammars only

sequential derivation can be applied, but a kind of �parallelism� is present in lin-

ear grammars. We show that �nite languages can be generated by a recursion-free

rule-set. It is well-known that in context-free grammars the derivation can be in

maximal (independent) parallel way. We show that in cases of context-sensitive and

recursively enumerable languages the parallel �branches� of the derivation have some

synchronization points. In the case of context-sensitive grammars this synchroniza-

tion can only be local, but in a derivation of an arbitrary grammar we cannot make

this restriction. We present a framework to show how the concept of parallelism can

be �t to the derivations in formal language theory using tokens.

Triangle: Language, Literature, Computation, n. 8, 2012
Publicacions Universitat Rovira i Virgili · ISSN: 2013-939X

https://revistes.urv.cat/index.php/triangle

102 B. Nagy

1 Introduction

Chomsky type grammars and generated language families are one of the most basic

and important �elds of theoretical computer science. The �eld is fairly old, the

basic concept and results are from the middle of the last century. On other hand, at

the end of the twentieth century parallel computing played an increasingly greater

role. In this paper we analyze the derivations of Chomsky type grammars and their

relation to the concept of parallelism. We will use some variations of the well-known

derivation trees and tokens on graphs in their Petri-net forms.

Note that parallelism is not new in formal language theory. The so-called Indian

and Russian grammars were investigated. These grammars can be related to the

context-free case. The Lindenmayer systems are also parallel rewriting systems, but

the language family they produce is orthogonal to the Chomsky-type language family

(for more about this topic see [14]). In this paper we would like to analyse how the

concept of parallelism can be present in Chomsky-type grammars.

In the next section we recall some basic de�nitions that we will need later on.

In Section 3 we show that in �nite languages a derivation cannot be recursive in-

dependently of the forms of the rules used. In Sections 4 and 5 we show that the

derivations must be sequential in linear and regular grammars, but a kind of "paral-

lelism" is needed in derivations for linear languages. After this we show that in the

case of context-free grammars the derivation can be maximal parallel without any

restriction or communication. In Section 7, which is based on Penttonen's old result

([11]), we build the derivation graphs for context-sensitive grammars in a tree-like

form. With this approach we show that in these cases the derivation can be parallel

to some synchronization points of the neighboring branches. Finally in type 0 gram-

mars, using an appropriate normal form we show that synchronization can happen

between branches at a distance, when all mediate branches terminate by the empty

word.

Using our approach we �nd that the generating power increases when the possi-

bility of parallelism is present. Moreover with local communication (synchronization)

it is more powerful. Finally when the synchronization is not merely local we get the

whole recursively enumerable language class. We also present some interesting fur-

ther branches of research based on these results.

2 Preliminaries

In this section we recall some basic concepts and facts about the �eld of formal

languages and Petri-nets. First the de�nitions of the Chomsky-type grammars and

the Chomsky hierarchy are shown.

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 103

2.1 Chomsky-type grammars

A grammar is a construct G = 〈N,T, S,H〉, where N,T are the non-terminal and

terminal alphabets, with N ∩ T = ∅; they are �nite sets. S ∈ N is a special symbol,

called initial letter. H is a �nite set of pairs, where a pair is usually written in

the form v → w with v ∈ (N ∪ T)∗N(N ∪ T)∗ and w ∈ (N ∪ T)∗. (We used the

well-known Kleene-star notation.) H is the set of derivation rules.

Let G be a grammar and v, w ∈ (N ∪ T)∗. Then v ⇒ w is a direct derivation

if and only if there exist v1, v2, v
′, w′ ∈ (N ∪ T)∗ such that v = v1v

′v2, w = v1w
′v2

and v′ → w′ ∈ H. A derivation v ⇒∗ u holds if and only if either v = u or there

is a �nite sequence of sequential forms connecting them as v = v0, v1, ...vm = u in

which vi ⇒ vi+1 is a direct derivation for each 0 ≤ i < m. A sequence of letters

v ∈ (N ∪ T)∗ derived from S is called a sentential form, while we refer to u ∈ T ∗ as
a (terminal) word. We sign the empty word by λ.

The language generated by a grammar G is the set of terminal words that can

be derived from the initial letter: L(G) = {w|S ⇒∗ w ∧ w ∈ T ∗}.
Two grammars are (weakly) equivalent if they generate the same language (mod-

ulo the empty word).

Depending on the possible structures of the derivation rules the following classes

of grammars/languages are considered:

• Type 0, or phrase-structure grammars: there is no further restriction on the

possible derivation rules.
• Type 1, or context-sensitive grammars: all derivation rules are in the form

v1Av2 → v1wv2, with v1, v2 ∈ (N ∪ T)∗, A ∈ N and w ∈ (N ∪ T)∗ \ {λ}
(except possibly for the rule S → λ, in which case S does not occur on any right

hand side of a rule).
• Type 2, or context-free grammars: for every rule the next scheme holds: A→ v

with A ∈ N and v ∈ (N ∪ T)∗.
• Linear grammars: each rule is one of the next forms: A → v, A → vBw; where

A,B ∈ N and v, w ∈ T ∗.
• Type 3, or regular grammars: each derivation rule is one of the following forms:

A→ w, A→ wB; where A,B ∈ N and w ∈ T ∗.
• Finite languages: in this case, the restriction is not actually for the rules, but

the number of the words in the language: it must be �nite.

The generated language is regular/ linear/ context-free/ context-sensitive/ re-

cursively enumerable if it is generated by a regular/ linear/ context-free /context-

sensitive/ phrase-structure grammar, respectively. For these families of languages

we use the notations Lreg, Llin, LCF , LCS , LRE , respectively, and Lfin denotes the

�nite languages.

The Chomsky-type grammars and language families are well known. The gener-

ating powers of these grammars are in the following hierarchy.

Lfin (Lreg (Llin (LCF (LCS (LRE .

TRIANGLE 8 • June 2012

104 B. Nagy

2.2 Petri nets

In this subsection we recall some concepts about Petri-nets based on [12, 2]. Formally

the structure of a Petri-net is a directed bipartite graph: (V,E) with two types of

nodes: V = S ∪ T (S ∩ T = ∅) and edges E ⊆ (S × T) ∪ (T × S). The �rst node

types (represented by ellipses in the �gures) are places, and the other types are the

transitions (rectangles). The connections are represented by arrows. Each arrow has

di�erent types of end nodes. In Figure 1 an example is shown. We indicated the

places of the net by numbers. At each place there can be a token, so the state of

the system is a binary vector with the dimension of the number of places of the net.

A transition can switch if every place has a token from which an arrow goes to the

transition (i.e. the transition is active, i� all its input places have tokens). After a

transition has switched the tokens will move through on the transition. This means

that a token will be at each output place and no token will appear at the input

places of the switched transition.

In the �gure starting with a token at 1 (i.e. system-state (10000000)), only 1

transition is active and the result will be the vector (01100000) after it switches.

After the next step we have (00111100). Now three of the transitions are active.

Suppose that the one needed tokens at 3 and 6 is going resulted (00011110). Here a

token at 6 is used, but it is at the same place after the transition. We will call this

type of connection a context-connection. Note that we allow transitions without

outgoing edges which allows us to delete a token from the system. This happens

with the token at 4 after the next transition switches. Finally, after the last possible

transition the system is in state (00001011). There are no more active transitions,

and the system halts. Note that the last two transitions are independent, so they

can go at the same time in parallel.

We will simulate the possible derivation processes at various types of grammars

with the help of Petri-nets. The derivations have a widely used graphical representa-

tion (basically for context-free grammars), which we will use in the sections below.

In this paper we will use Petri-nets that start with only 1 token and �nish the pro-

cess with exactly the same number of tokens as the number of letters in the derived

word. In our nets the states will be labelled with letters. The tokens at non-terminal

labelled places are �living� tokens and at the terminal labelled places the tokens are

not �living�. The transitions will be the derivation rules used.

To read the derived word an order of the leaf-places will be used. A derivation

is successful if and only if the leaves have tokens and therefore the systems halts.

As we will see, a system may halt without a successful derivation.

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 105

Fig. 1. An example for a Petri-net

3 Parallelism and Finite Languages

From this section we use the Chomsky hierarchy in reverse order. We start from

the smallest family (the �nite one), and we go in the direction of the more e�ective

grammars.

For the Chomsky-type grammars there are so-called normal forms, in which the

form of the derivation rules used are more restricted than in the original de�nition.

It is also well-known that using only such restricted-form rules the generating power

remains the same.

From now on we do not care whether the empty word is in language L or not.

It is obvious that using most normal forms the resulting language is L \ {λ}. (If one

TRIANGLE 8 • June 2012

106 B. Nagy

wants to generate the original language including λ, then she/he can add the new

rules S0 → λ, S0 → S (with a new non-terminal S0, where S was the initial letter

in the old grammar, and S0 is the initial letter in the new grammar) to the set of

rules in any cases.)

Let us review the case of �nite languages. It is a very important subfamily of

regular languages (recently, for instance the so-called cover automata are used to

describe them).

First, there is a normal form for these languages. Let L be a �nite language. One

can use the normal form containing rules of form S → w, where w ∈ T ∗ (S → wi
for each wi ∈ L).

In many cases the normal form above is not an e�cient way of generating lan-

guages. For this reason, we usually have other types of rules. To increase the e�-

ciency (description of the grammar, generation speed, i.e. to get system with small

number of derivations; and small cardinality of the rule set H) of the derivations we

can allow stronger generating (for instance CF, or CS) rules as well (as they can be

used in coding, for instance).

Finite languages form a special class of regular languages that have no cycle in

the automaton. When a non-terminal has been replaced in a derivation, it can never

again be in the sentential form. (We call this the anti-pumping property of �nite

languages.)

Apart from using a special regular grammar to generate a �nite language we can

use grammar in which there is no restriction on the form of the rules, so parallel

derivation can used. For this e�ective generating method, we need a restriction on

the non-terminals used: namely, they must have at least a partially ordering relation.

We can formulate this in the following way.

Theorem 1. Let G be a grammar with an ordering relation among the non-terminals

such that

- S is the smallest,

- if there is rule u → v in which the non-terminal A is rewritten, then each

non-terminal appearing in v in the place of A is strictly greater than A.

Then G generates a �nite language.

Proof. The second condition clearly implies that for context-free rules after a step

used for the non-terminals A it disappears and only greater non-terminals appears.

The number of non-terminals is �nite which implies that the derivation �nish in

a limited number of steps. The same holds for context-sensitive and 0-type rules

as well. Starting from the initial letter the sentential form only has non-terminals

with higher values. (In CS-rules the context remains, but in the substituted part

the value of non-terminals increases. In arbitrary rules each of non-terminals on the

right-hand-side has greater values than the highest on the left-hand side. Therefore

there is no way of pumping a word.) 2

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 107

How the �e�ciency� of a grammar generating, for example, a �nite language

(using for instance, context-free rules) can be measured is an interesting question.

4 Derivations in Regular Grammars

First, normal forms for generating regular languages are recalled. There are several

alternative forms of these types of grammars.

A grammar is called right-(left-)linear if all derivation rules are in the forms

A → uB,A → u (A → Bu,A → u) with A,B ∈ N and u ∈ T ∗. Each regular

language can be generated by either a left-linear or a right-linear grammar. The more

restricted regular forms of the grammar can also be used. Each regular grammar

has equivalent grammars that use only rules in the form A → aB,A → a (or

A→ Ba,A→ a) with A,B ∈ N and a ∈ T .
Now we show examples for regular derivations both in the usual �derivation-tree�

and the Petri-net forms.

Example 1. Let G1 = 〈{S,A,B,C}, {a, b}, S, {S → aS, S → baA,A → aA,A →
baaB,B → aB,B → b,B → baaaC,C → aC,C → a}〉 be a regular grammar.

Figure 2 shows a derivation in this system.

Fig. 2. Derivation in a regular grammar

TRIANGLE 8 • June 2012

108 B. Nagy

Example 2. Let G2 = 〈{S,A}, {a, b}, S, {S → aA,A → bS,A → b, }〉 be a regular

grammar. Figure 3 shows a derivation in this system by a Petri-net that initially

has 1 token in the top position.

Fig. 3. Petri-net representing a derivation of a regular grammar

In Figure 2 a so-called derivation-tree is shown. In these graphs all leaves are

labelled by a terminal symbol (or sometimes by the empty word λ). All other nodes

(they are labelled by non-terminals) must have some (at least one) successors.

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 109

Using the Petri-net representation of a derivation we can assume that the net

starts with only one token at the start-node. When the tree branches a living token

that goes through on a transition, it must be multiplied in the following way: it

disappears from its original place and there will be a token at each successive place.

The derivation is (successfully) �nished when all leaves (terminal labelled places)

have a token, and there are no more tokens in the graph. In this case there is no

living token in the net any more. In regular cases the process can only go in one

order.

Using only rules of types A→ aB,A→ a the derivation goes letterwise. Starting

from the �rst letter of the word to the last one the derivation gives one letter in each

step. This is a totally sequential derivation. In all regular languages every word can

be built letter to letter from the beginning.

We discuss some of our results and comments about regular grammars in the

section below in comparison ti the next class, the linear one.

5 Derivations in Linear Grammars

As we can see in regular and linear grammars each rule has a non-terminal on the left

hand side and at most one non-terminal on the right hand side. (Linear grammars

are special type 2 grammars with at most 1 non-terminal on the right hand side of

each rule.)

Therefore we have the following statement.

Proposition 1. The derivations in a linear (or regular) grammar can only be in

sequential mode.

Proof. Starting from the initial letter the sentential form contains at most 1 non-

terminal in each step. When the sentential form has a non-terminal we must replace

it by a rule in the next step. Without a non-terminal the derivation cannot continue.

It is terminated with the word containing only terminals. 2

The only di�erence between the regular and the linear case is the following. In a

derivation of a regular grammar the same side is always used for further derivation;

all the terminals appear on the other side of the non-terminal. These derivations

are totally sequential ones. In linear grammars the terminals can appear on both

sides of the derivations graph. It is a kind of parallelism which appears at these

derivations. Both sides can/must be built parallel to the words. In the general case

a word cannot be obtained from the beginning to the end.

Now, a normal form for linear grammars is presented.

Lemma 1. Every linear grammar has an equivalent grammar in which all rules are

in forms A→ aB,A→ Ba,A→ a (A,B ∈ N, a ∈ T).

TRIANGLE 8 • June 2012

110 B. Nagy

Proof. Introducing new non-terminals each linear rule can be replaced by a se-

quence of rules in the desired forms. 2

Now we show examples for derivations in linear grammars.

Example 3. Let G3 = 〈{S,A,B}, {a, b}, S,H3〉 be a linear grammar, with rule set

H3 = {S → aA,A→ Sa,A→ a, S → bB,B → Sb,B → b, S → a, S → b}. Figure 4
shows a derivation in this grammar.

Fig. 4. Derivation in a linear grammar with rules in normal form

Example 4. Let G4 = 〈{S}, {a, b}, S, {S → ab, S → aSb}〉 be a linear grammar.

Figure 5 shows a Petri-net representation of a derivation in this system.

Remark 1. When a grammar only has rules in types A → aB,A → Ba, A → a the

derivation graph is a binary tree. All non-terminal nodes except the last one has

two successor nodes and exactly one of them is a non-terminal node.

Based on Proposition 1 the following statement is true.

Corollary 1. The derivation trees and the derivations in linear (or especially regu-

lar) grammars have one-to-one correspondence.

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 111

Fig. 5. Petri-net for derivation in a linear grammar

The derivation processes that use the Petri-net representation in linear and reg-

ular cases can only go in one order: the order of switching of the transitions is

determined by the net. The regular and the linear cases only di�er in the order-

ing of the output places and leaves. Based on these facts linear languages can be

recognized by �nite automata equipped by two heads [10, 8].

The concept of derivation-trees is more complete in the context-free grammars,

as the next section will present.

6 Derivations in Context-Free Grammars

CF grammars are very popular because the concept of derivation trees �ts very

well in these derivations. CF grammars are more powerful than previous linear and

regular grammars. The left hand side of each rule contains only one non-terminal as

in the linear or regular case, but there is no restriction for on the right hand side.

Well-known the following fact about the possible 'divide to smaller (easier) parts

(problems)' type parallelism.

TRIANGLE 8 • June 2012

112 B. Nagy

Proposition 2. In a context-free grammar the derivation can go in a maximal par-

allel way. The derivation tree can be built by levels: i.e., every non-terminal of the

sentential form can be rewritten using a derivation rule at the same time.

Proof. It follows from the structure of the derivation rules. In each rule-using a non-

terminal will be replaced independently of the other parts of the sentential form.

For each derivation (knowing the replaced non-terminal and the applied rule) there

is a unique derivation tree. But we get the same result as the original derivation,

if all non-terminals of the sentential form is replaced by each step. In this way we

build a complete level of the derivation tree in each step. 2

Corollary 2. The possible sequential derivations in context free grammars form

equivalent classes. Each class can be represented by a derivation tree. Each deriva-

tion tree can be represented by a unique sequential derivation, the so-called left-most

derivation.

In this way, one can assume that the nodes of the derivation tree are problems,

the child nodes are the subproblems and the terminal-labeled nodes are the easily-

solved (or trivial) problems. The derivation is �more parallel� in the context-free

case than in the linear one. The word can be built in many places at the same time

independently.

Example 5. Let G5 = 〈{S,A}, {a, b, c, d}, S,H5〉 be a context-free grammar, with

rule set H5 = {S → AbA, S → cA,A → a,A → dSd}. Figure 6 shows a derivation-

tree in this system.

Now, we recall possible normal-forms for context-free grammars.

Fact 1 For each context-free grammar there is an equivalent grammar in which all

derivation rules are in one of the forms A → BC,A → a (A,B,C ∈ N, a ∈ T). A
grammar that only has these kinds of rules is in the so-called Chomsky normal form.

Using the Chomsky normal form the tree has a special binary tree form. Each

node labeled by a non-terminal has two successor nodes labeled by non-terminals or

only one successor node labeled by a terminal (leaf-node).

In the next example we generate the Dyck language.

Example 6. Let G6 = 〈{S,A,B,C}, {a, b}, S,H6〉 be a context-free grammar in

Chomsky normal form, with rule set H6 = {S → SS, S → AB,S → AC,C →
SB,A → a,B → b}. Figure 7 shows a derivation-tree in Petri-net form in this

system.

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 113

Fig. 6. Derivation in a context-fee grammar

As the �gures show the parallel branches of the trees are independent of each

other. The branches of the derivation use their tokens independently. In the case of

CF (and also regular and linear) grammars the sequence of switching of the Petri-net

of a derivation(-tree) must be �nished by a successful derivation, since there is at

least 1 active transition until the system-state equals the state with tokens exactly

on the leaves.

In the sections below we show that the concept of derivation trees and the parallel

derivations can be used in context sensitive and phrase structured grammars as well

(for more details, see [6, 9]).

7 Derivations in Context-Sensitive Grammars

Normally we can use sequential derivations with the sentential forms in CS case.

The concept of derivation trees does not work in pure form. The neighborhood of

a non-terminal can also be important using a replacing rule. In the �old days� of

formal language theory various attempts were made to describe the derivations of

context-sensitive grammars by tree-like structures. In general, the results were not

satisfactory. In this section we present a new kind of derivation structure, which

may be useful.

We use two kinds of edges in these derivation graphs. The original, derivation

edges come from the replaced non-terminal and go to the new parts of the string

TRIANGLE 8 • June 2012

114 B. Nagy

Fig. 7. Petri-net form of a derivation in a Chomsky normal form grammar

given in the right hand side of the derivation rule used. The new type of edges (rep-

resented by boxes and dotted arrows) show the neighborhood of the non-terminals

replaced as it is requested by the applied rule. We will use the names context-box

and context-edge.

Example 7. Let G7 = 〈{S,A,B,C,D,E, F,G, I, J,K,L,M,O, P}, {a, b, c}, S,
H7〉 be a context sensitive grammar, with rule set H7 = {S → aSA, S →
bSB, abS → abCE, baSA → baDFA,EA → EG,EG → IG, IG → IE, IE →
AE,EB → EJ,EJ → KJ,KJ → KE,KE → BE,FA→ FL, FL→ML,

ML → MF,MF → AF,FB → FO,FO → PO,PO → PF, PF → BF,CA →
CE,CB → CF,DA → DE,DB → DF,C → a,D → b, E → a, F → b}. Figure 8

shows a possible derivation-graph in this system.

The derivation here can have parallel branches, but the solutions of the subprob-

lems are not necessarily independent. Sometimes in order to continue the work on the

solution of a subproblem results are needed from other (neighboring) subproblem-

solutions. (Communication is used in this way among neighboring branches.)

Now we use Penttonen's result:

Fact 2 Every context-sensitive language can be generated by a grammar whose

derivation rules are of the form A → BC, AB → AC, A → a, where A, B and

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 115

Fig. 8. �Derivation-tree� in a context sensitive grammar with context-boxes

C are nonterminals and a is a terminal. This normal form is from ([11]), where it

was called the one-sided normal form.

Using this normal form the derivation 'tree' will be simpler. Each context-box

contains only a left-neighbor non-terminal. Using this special grammar form the

derivation graphs will have simpler structures.

Example 8. Let G8 = 〈{S,A,B,C,D,E, F,G, I, J,K,L,M,O}, {a, b, c}, S,H8〉 be a
context sensitive grammar in Penttonen normal form, with rule set H8 = {S →
AG,G → BC,A → IJ, J → DE,EB → EE,EC → EK,K → FL,D → IM,M →
AB,BE → BB,BF → BO,O → CL,A → a,B → b, C → c,D → a,E → b, F →
c, I → a, L→ c}. Figure 9 shows the Petri-net of a possible derivation-graph in this

system.

Remark 2. In a context-sensitive grammar the derivation can be parallel, but when

the context is important a synchronization point is needed. Therefore, the derivation

is not maximal parallel; the `speeds' of the branches usually di�er.

There is a token for each non-terminal in the graph which is present at the same

time (in the actual sentential form). Then using a rule in which there are more

TRIANGLE 8 • June 2012

116 B. Nagy

Fig. 9. Petri-net of a �derivation-tree� in a Penttonen normal form grammar

non-terminals on the right hand side than the left hand side the graph will have

more tokens than before. For example at rule S → AG a new token will be born as

in previous (i.e. CF) cases. The rules that need context can be used only if all the

letters which are in their context have tokens. For instance, in the rule EC → EK

the non-terminal C can be replaced by K only if there are tokens at C and at

the left-most neighbor in the derivation, which is a node labelled by an E. Then a

token moves from the node labelled by C to node K on a normal graph edge. The

derivation is successfully terminated if all the leaves have tokens, and there are no

other tokens in the graph. As we can see, we cannot generally use the concept `level'

in these graphs.

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 117

A derivation from a non-terminal can be continued when all branches are after

the points where this non-terminal (as a place in the net) is needed as a (part of a)

context. This means that the non-terminal has been used at all the context-edges

which contain it; it satis�es the other branches of the derivation at the meeting

points.

Using Penttonen's result, the derivation graph has a simpler form. The derivation

can go left to right. The leftmost branch does not depend on other branches. The

next branch may need context somewhere, and it can be found on the �nished left

neighbor branch. It is important that these context edges cannot cross each-other.

Of course a derivation graph usually represents more than one sequential derivation.

From the graph the �left-most� derivation of a word in a CS grammar can be obtained

in the following recursive way.

Use the left-most branch up to the �rst place at which a context edge starts.

Then use the next branch till this point and use the context edge as well. (When

a context edge starts in this branch, then the right neighboring branch must be

derived to this point as well, and so on.) When a branch terminates, the next one

is its right-hand neighbor (at the lowest branching point). When all branches have

terminal letters on their end, the derivation is �nished.

In the Petri-net form of the derivations the �appearance check� appeared. In

these transitions more tokens are needed, but only one of them "develops" after the

transition (i.e. it is cancelled from its original place and appears in new place(s)).

All others will be at the same place as before this step.

The derivation process in context-free (and specially in linear and regular) cases

can halt only without a �living token�, �nishing the derivation of a word. In the case

of context-sensitive derivations the net can halt without terminating the derivation,

so the applications of the rules has a new restriction. This restriction is presented

by the context edges and the context-connections of the net.

As we can see, if a kind of synchronization (communication, or appearance check)

is used among the parallel branches, the generating power of the grammar increases.

If Penttonen normal form is used our notation is redundant. The context arrows or

context boxes can be deleted, because the context used must be a `one letter left-

context'. Using this kind of approach of context-sensitive derivations an algorithm

based on the Cocke-Younger-Kasami algorithm can be presented for CS-parsing.

(This could be the subject of future study.)

8 Derivations in RE (Arbitrary) Grammars

With the original form of these grammars (see Section 2.1) we cannot say anything

about parallelism, because we cannot be sure about what kind of context will be

needed and how it will change in a future derivation step. Using sentential form the

derivation can be in sequentially, but we would like to say something more.

TRIANGLE 8 • June 2012

118 B. Nagy

A normal form of the grammars can again be of help. There are many normal

forms for phrase-structured grammar. We will use the following facts (they can be

found in [15, 4]).

Fact 3 Each phrase-structure grammar is equivalent to a grammar with only context-

sensitive rules, and a single additional rule A→ λ.

Every recursively enumerable language can be generated by a grammar containing

rules only in forms A → BC, AB → AC, A → a and A → λ (where A,B,C ∈
N, a ∈ T).

Using the normal form given in Fact 3 our case looks like the context sensitive

case but the rule(s) A → λ, (where A ∈ N). Let us check what di�erence appears

for the reason of these eliminating rules.

Example 9. Let G5 = 〈{S,A,B,C}, {a, b, c}, S, {S → AB,B → BC,B → λ,AC →
AA,A → a,B → b, C → c}〉 be a phrase structured grammar. Figure 10 shows a

possible derivation-graph in this system.

Fig. 10. "Derivation-tree" in a phrase structured normal form grammar

As we can see, the context edges can connect nodes which are far from each

other when the empty word (λ) is derived from all the branches between. In these

TRIANGLE 8 • June 2012

Derivation �Trees� and Parallelism in Chomsky-Type Grammars 119

cases the node which needs to be a context must wait till the derivation is �nished

by the empty word in other branches, and then it can be used as the context of a

further node.

A new phenomenon appears in these cases: The derivation process looses the to-

kens at the leaves containing the empty-word. (In all previous sections the derivation

processes were without loosing tokens.) In the Petri-net representation the transi-

tions without outgoing edges represent these λ-rules.

9 Conclusions

An approach to generate a �nite language e�ciently is shown (allowed any kind of

derivation rules). In the case of regular and linear grammars the derivation must

be sequential; the sequence of switching transitions of the corresponding Petri-net

is unique. The generating power of a grammar is larger if the possibility of paral-

lelism exists. In linear grammars the word is built parallely in two places: i.e. the

order of leaves varies. In context free grammars the derivation can be maximal par-

allel, the word can be built in several places at the same time and the branches

of the derivations are independent of each other. The Petri-net forms a tree, the

number of possible switching sequences of transitions are usually high and they all

represent successful derivations. As we have seen the generating power increases to

allow synchronization (communication or appearance checking) between the parallel

branches. In the context-sensitive case it is enough to use only the left-neighboring

token in this synchronization. A sequence of switching transitions may not wait

for these synchronization points, so the net can halt without a successful deriva-

tion. Moreover, if λ-rules are allowed this context communication can connect nodes

which are far from each other so the e�ciency is similar to that of the Turing Ma-

chines. In our paper we have mixed the concept of the derivation in a grammar and

the theory of Petri-nets. Using grammars in normal forms at each token-multiplying

step only one new token may appear. The parallelism of context-free derivations is

our basis. With other kinds of restriction (for instance ordering the non-terminals)

parallelism can be used in derivations of �nite (regular/linear) grammars as well.

To analyze what e�ectiveness mean involving the parallelism is a topic of further

research. On the basis of the derivation-graph presented for the context-sensitive

case we are working on a CYK-like parsing algorithm for grammars in Penttonen

normal form.

As the �rst version of this paper is written in 2004, and it appears in 2010, some

ideas presented here are further developed in, for instance, [7, 9, 6, 8].

TRIANGLE 8 • June 2012

120 B. Nagy

Acknowledgements

The research is partly supported by funds of the Hungarian Ministry of Education

(OTKA F043090 and OTKA T049409).

References

1. Hopcroft, J. and J.D. Ullmann (1979). Introduction to automata theory, lan-

guages, and computation. Reading: Addison-Wesley.
2. Kleijn, J. (2003). Concurrency and formal language theory. In Lecture motes

in the 2nd International PhD School on Formal Languages and Applications.

Tarragona: Universitat Rovira i Virgili.
3. Martín-Vide, C. (2003). Formal language theory: classical and non-classical ma-

chineries. In Lecture notes in the 2nd International PhD School on Formal Lan-

guages and Applications. Tarragona: Universitat Rovira i Virgili.
4. Mateescu, A. (2004). On context-sensitive grammars. In C. Martín-Vide, V.

Mitrana and Gh. P un (eds.), Formal Languages and Applications, pp. 139�

162. Berlin: Springer.
5. Nagy, B. (2004). Derivations in Chomsky-type grammars in mirror of parallelism

(extended abstract). In IS-TCS'04, Theoretical Computer Science � Information

Society (ACM conference), pp. 181-184. Ljubljana.
6. Nagy, B. (2006). Left-most derivation and shadow-pushdown automata for

context-sensitive languages. In Proceedings of the 10th WSEAS International

Conference on Computers, pp. 962-967. Athens.
7. Nagy, B. (2006). On the notion of parallelism in arti�cial and computational

intelligence. In Proceedings of the 7th International Symposium of Hungarian

Researchers on Computational Intelligence, pp. 533�541. Budapest.
8. Nagy, B. (2008). On 5′ → 3′ sensing Watson-Crick �nite automata. Lecture

Notes in Computer Science, 4848: 256�262.
9. Nagy, B. (2010). Derivation trees for context-sensitive grammars. In M. Ito,

Y. Kobayashi and K. Shoji (eds.), Automata, Formal Languages and Algebraic

Systems. Singapore: World Scienti�c.
10. Nagy, B. (2012). A class of 2-head �nite automata for linear languages. Triangle,

8: 89�99 (this volume).
11. Penttonen, M. (1974). One-sided and two-sided context in formal grammars.

Information and Control, 25: 371�392.
12. Reisig, W. and G. Rozenberg (eds.) (1998). Lectures on Petri Nets I: Basic

models. Berlin: Springer.
13. Révész, G. (1983). Introduction to formal languages. New York: McGraw-Hill.
14. Rozenberg, G. and A. Salomaa (eds.) (1997). Handbook of formal languages.

Berlin: Springer.
15. Salomaa, A. (1973). Formal languages. New York: Academic Press.

TRIANGLE 8 • June 2012

